《DeepLab V3》论文阅读

论文地址

https://arxiv.org/abs/1706.05587

摘要

本文首先回顾了空洞卷积在语义分割中的应用,这是一种显式调整滤波器感受野和控制网络特征响应分辨率的有效工具。为了解决多尺度分割对象的问题,我们设计了采用级联或并行多个不同膨胀系数的空洞卷积模块,以更好的捕获上下文语义信息。此外,我们扩充了在DeepLab V2中提出的ASPP模块,进一步提升了它的性能。并且我们还分享了一些训练系统方面的经验和一些实施方面的细节。

介绍

作者提到DeepLab系列面临三大挑战:

挑战一:为分类任务设计的DCNN中的多次Max-Pooling和全连接层会导致空间信息的丢失。在DeepLabV1中引入了空洞卷积来增加输出的分辨率,以保留更多的空间信息。

挑战二:图像存在多尺度问题,有大有小。一种常见的处理方法是图像金字塔,即将原图resize到不同尺度,输入到相同的网络,获得不同的feature map,然后做融合,这种方法的确可以提升准确率,然而带来的另外一个问题就是速度太慢。DeepLab v2为了解决这一问题,引入了ASPP(atrous spatial pyramid pooling)模块,即是将feature map通过并联的采用不同膨胀速率的空洞卷积层,并将输出结果融合来得到图像的分割结果。

挑战三:分割结果不够精细的问题。这个和DeepLabV1的处理方式一样,在后处理过程使用全连接CRF精细化分割结果。

在本文中,我们我们重新讨论了在级联模块和空间金字塔池化框架下应用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值