题目:http://acm.split.hdu.edu.cn/showproblem.php?pid=5877
题意:
n个节点的有根树,u是v的祖先,每个节点有个权值a[u].求 a[u] * a[v] <= k的有序对的数量。
分析:
这题一开始想到先求一下dfs序,然后把dfs序排列,二分找到每个结点的位置,然后在先前遍历找符合要求 的点,时间复杂度O(n^2),显然会超时~~
然后就想dfs过程中维护一个数据结构,把访问过的祖先节点的a都存起来,然后找比当前节点a值小的数的个数,求一下所有结点的和即可~~
因为数据范围很大,显然要离散化,顺便把k/a[i]也放进去,然后用树状数组维护一下即可。时间复杂度O(nlogn)
#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <string>
#include <map>
#include <cmath>
#include <queue>
#include <set>
using namespace std;
typedef long long ll;
typedef pair<int, int>pii;
const double PI = acos (-1.0);
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 9;
ll a[N];
int vis[N], head[N], p[N], c[N];
ll k, ans;
int n, cnt, tot;
struct Edge {
int v, next;
} edge[N];
void addedge (int u, int v) {
edge[tot].v = v;
edge[tot].next = head[u];
head[u] = tot++;
}
int lowbit (int x) {
return x & (-x);
}
void update (int x, int val, int n) {
for (int i = x; i <= n; i += lowbit (i) )
c[i] += val;
}
int getsum (int x) {
int ans = 0;
for (int i = x; i > 0; i -= lowbit (i) )
ans += c[i];
return ans;
}
void dfs (int u) {
int pos = a[u + n];
ans += getsum (pos);
update (a[u], 1, n + n);
for (int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].v;
dfs (v);
}
update (a[u], -1, n + n);
}
bool cmp (int x, int y) {
if (a[x] == a[y]) return x < y;
return a[x] < a[y];
}
int main() {
//freopen ("f.txt", "r", stdin);
int u, v;
int T;
scanf ("%d", &T);
while (T--) {
scanf ("%d%lld", &n, &k);
memset (head, -1, sizeof (head) );
memset (vis, 0, sizeof (vis) );
ans = 0;
tot = 0;
for (int i = 1; i <= n; i++) {
scanf ("%lld", &a[i]);
if (a[i] == 0) a[n + i] = INF;
else a[n + i] = k / a[i];
p[i] = i;
p[n + i] = n + i;
}
sort (p + 1, p + 1 + n + n, cmp);
for (int i = 1; i <= n + n; i++) a[p[i]] = i;
for (int i = 0; i < n - 1; i++) {
scanf ("%d%d", &u, &v);
addedge (u, v);
vis[v]++;
}
for (int i = 1; i <= n; i++) if (vis[i] == 0) {
u = i;
break;
}
dfs (u);
printf ("%lld\n", ans);
}
return 0;
}
本文介绍了一种高效算法,用于解决有根树中特定条件下的节点对计数问题。通过对DFS序列进行优化,并利用树状数组进行维护,实现了O(nlogn)的时间复杂度。
731

被折叠的 条评论
为什么被折叠?



