prim算法

本文深入解析Prim算法,一种用于构建最小生成树的有效方法。通过详细的代码实现和步骤解释,帮助读者理解如何从图中选择边以形成总权重最小的树。适合初学者和希望深化理解图算法的人。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最小生成树板子题:POJ 1287


最小生成树的prim算法一直没学,而且好像最短路也会用到这种思路,于是今天学了一下,找了很多博客,算法图解都挺好的,但是代码实现就很复杂,最后找了篇模板题题解博客看了一遍才懂代码实现。

prim算法其实思路很简单,就是不断的找当前距离已生成的树最小的结点加入树,直到所有结点都入树就完成了。

ps:如果算法思路都不清楚的话,可以看看这篇博客的图解:传送门(代码就不建议看了,个人感觉写的不太友好)

知道了思路,接下来就看上面的模板题,然后仔细、耐心的模拟一遍下面的代码应该就没问题了。

//https://blog.youkuaiyun.com/hesorchen
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <string>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
using namespace std;
#define ll long long
#define endl "\n"
#define INF 0x3f3f3f3f
#define mod 1000000007
#define MAX 55

int n, m;
int mp[MAX][MAX]; //邻接矩阵
int d[MAX];       //表示每个图外的结点距离已生成树的距离
int t[MAX];       //记录生成树内外的结点
int prim()
{
    int ans = 0;
    d[1] = 0; //假设结点1在生成树内,其他都在树外
    int v;
    while (1)
    {
        v = -1;
        for (int i = 1; i <= n; i++)
        {
            if (!t[i] && (v == -1 || d[i] < d[v])) //寻找当前离生成树最近的结点v
                v = i;
        }
        if (v == -1) //如果所有结点都已经在生成树内,说明最小生成树已经生成
            break;
        t[v] = 1; //把结点v加入结点
        ans += d[v];
        for (int i = 1; i <= n; i++) //把结点v加入生成树之后,要更新与v相连的结点 到已生成树的距离!!!
            d[i] = min(d[i], mp[i][v]);
    }
    return ans;
}
int main()
{
    while (cin >> n && n)
    {
        cin >> m;
        for (int i = 1; i <= n; i++) //初始化邻接矩阵
        {
            for (int j = 1; j <= n; j++)
                if (i == j)
                    mp[i][j] = 0;
                else
                    mp[i][j] = INF;
        }
        while (m--)
        {
            int x, y, z;
            cin >> x >> y >> z; //输入更新邻接矩阵
            if (mp[x][y] > z)
                mp[x][y] = mp[y][x] = z;
        }
        for (int i = 1; i <= n; i++)
            d[i] = INF;
        fill(t, t + MAX, 0);
        cout << prim() << endl;
    }
    return 0;
}
今天效率好低,只看了这么一种算法。。。(太浮躁了!!)
### Prim算法与Kruskal算法的比较 Prim算法和Kruskal算法都是用于求解加权连通图中最小生成树的经典算法。尽管它们的目标相同,但在实现方式、时间复杂度、空间复杂度以及适用场景等方面存在显著差异。 #### 时间复杂度 - **Prim算法**:在最基础的形式下,Prim算法的时间复杂度为 $O(n^2)$,其中 $n$ 表示顶点的数量。通过使用更高效的数据结构如二叉堆优化后,时间复杂度可以降低至 $O(E\log V)$,这里 $E$ 是边的数量,$V$ 是顶点的数量[^1]。 - **Kruskal算法**:Kruskal算法的时间复杂度主要受到排序所有边的影响,通常为 $O(E\log E)$ 或者等价于 $O(E\log V)$,因为边的数量最多可达 $V(V-1)/2$(对于完全图)[^1]。 #### 空间复杂度 - **Prim算法**:其空间复杂度主要取决于顶点数量,大约为 $O(V)$,因为它需要维护一个包含所有顶点的信息的数据结构来跟踪哪些顶点已经被加入到最小生成树中。 - **Kruskal算法**:其空间复杂度则与边数相关,约为 $O(E)$,主要用于存储所有的边及其权重信息。 #### 实现难度 - **Prim算法**:通常认为Prim算法比Kruskal算法更容易实现,尤其是当使用邻接矩阵作为数据结构时。它依赖于优先队列来选择下一个最近的顶点加入到已有的树中。 - **Kruskal算法**:相比之下,Kruskal算法的实现稍微复杂一些,因为它不仅需要对所有边按权重进行排序,还需要一种机制(如并查集)来检测和避免形成环路。 #### 适用场景 - **Prim算法**:更适合处理边稠密的图,即边的数量接近于顶点数量平方的情况。在这种情况下,Prim算法的性能优势更为明显[^3]。 - **Kruskal算法**:对于稀疏图而言,即边的数量远小于顶点数量平方的情况下,Kruskal算法的表现更加出色。由于只需要对所有边进行一次排序,因此在处理大规模稀疏图时效率更高。 综上所述,虽然两种算法都能有效地找到最小生成树,但根据具体的应用场景选择合适的算法是非常重要的。如果图是稠密的,那么Prim算法可能是更好的选择;而对于稀疏图,则推荐使用Kruskal算法。 ```python # 示例代码 - Kruskal算法的基本框架 class UnionFind: def __init__(self, size): self.parent = list(range(size)) def find(self, x): if self.parent[x] != x: self.parent[x] = self.find(self.parent[x]) return self.parent[x] def union(self, x, y): rootX = self.find(x) rootY = self.find(y) if rootX == rootY: return False self.parent[rootY] = rootX return True def kruskal(n, edges): uf = UnionFind(n) res = [] for u, v, weight in sorted(edges, key=lambda x: x[2]): if uf.union(u, v): res.append((u, v, weight)) if len(res) == n - 1: break return res ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hesorchen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值