给定三个坐标点 A、B 和 C,求缺失点 D,使得 ABCD 可以构成平行四边形。
如果您喜欢此文章,请收藏、点赞、评论,谢谢,祝您快乐每一天。
示例:
输入: A = (1, 0)
B = (1, 1)
C = (0, 1)输出: 0, 0
解释:
三个输入点与点 (0, 0) 形成一个单位正方形输入: A = (5, 0)
B = (1, 1)
C = (2, 5)输出: 6, 4
如下图所示,可能有多种输出,我们需要打印其中的任意一种。

如果四边形的对边平行且长度相等,则该四边形称为平行四边形。

给定平行四边形的三个点,我们就能求出缺失边的斜率以及它们的长度。
该算法解释如下:
设 R 为缺失点。根据定义,我们有
• PR 的长度 = QS 的长度 = L1 (对边相等)
• PR 的斜率 = QS 的斜率 = M1 (对边平行)
• PQ 的长度 = RS 的长度 = L2(对边相等)
• PQ 的斜率 = RS 的斜率 = M2 (对边平行)
因此,我们可以找到距离 P 点 L1 且斜率为 M1 的点,如下文所述:
在给定斜率的直线上,找到给定距离的点:
Javascript 在给定斜率的线上找到给定距离处的点:https://blog.youkuaiyun.com/hefeng_aspnet/article/details/149936134
C# 在给定斜率的线上找到给定距离处的点:https://blog.youkuaiyun.com/hefeng_aspnet/article/details/149936112
Python 在给定斜率的线上找到给定距离处的点:https://blog.youkuaiyun.com/hefeng_aspnet/article/details/149936088
Java 在给定斜率的线上找到给定距离处的点:https://blog.youkuaiyun.com/hefeng_aspnet/article/details/149936046
C++ 在给定斜率的线上找到给定距离处的点:https://blog.youkuaiyun.com/hefeng_aspnet/article/details/149935654
现在,其中一个点将满足上述条件,这很容易检查(使用条件 3 或 4)。
以下是上述方法的实现:
// C++ program to find missing point of a
// parallelogram
#include <bits/stdc++.h>
using namespace std;
// struct to represent a co-ordinate point
struct Point {
float x, y;
Point()
{
x = y = 0;
}
Point(float a, float b)
{
x = a, y = b;
}
};
// given a source point, slope(m) of line
// passing through it this function calculates
// and return two points at a distance l away
// from the source
pair<Point, Point> findPoints(Point source,
float m, float l)
{
Point a, b;
// slope is 0
if (m == 0) {
a.x = source.x + l;
a.y = source.y;
b.x = source.x - l;
b.y = source.y;
}
// slope if infinity
else if (m == std::numeric_limits<float>::max()) {
a.x = source.x;
a.y = source.y + l;
b.x = source.x;
b.y = source.y - l;
}
// normal case
else {
float dx = (l / sqrt(1 + (m * m)));
float dy = m * dx;
a.x = source.x + dx, a.y = source.y + dy;
b.x = source.x - dx, b.y = source.y - dy;
}
return pair<Point, Point>(a, b);
}
// given two points, this function calculates
// the slope of the line/ passing through the
// points
float findSlope(Point p, Point q)
{
if (p.y == q.y)
return 0;
if (p.x == q.x)
return std::numeric_limits<float>::max();
return (q.y - p.y) / (q.x - p.x);
}
// calculates the distance between two points
float findDistance(Point p, Point q)
{
return sqrt(pow((q.x - p.x), 2) + pow((q.y - p.y), 2));
}
// given three points, it prints a point such
// that a parallelogram is formed
void findMissingPoint(Point a, Point b, Point c)
{
// calculate points originating from a
pair<Point, Point> d = findPoints(a, findSlope(b, c),
findDistance(b, c));
// now check which of the two points satisfy
// the conditions
if (findDistance(d.first, c) == findDistance(a, b))
cout << d.first.x << ", " << d.first.y << endl;
else
cout << d.second.x << ", " << d.second.y << endl;
}
// Driver code
int main()
{
findMissingPoint(Point(1, 0), Point(1, 1), Point(0, 1));
findMissingPoint(Point(5, 0), Point(1, 1), Point(2, 5));
return 0;
}
输出 :
0, 0
6, 4
时间复杂度: O(log(log n)),因为使用内置的 sqrt 和 log 函数
辅助空间: O(1)
替代方法:

由于对边相等,AD = BC 且 AB = CD,我们可以计算出缺失点 (D) 的坐标:
AD = BC
(Dx - Ax, Dy - Ay) = (Cx - Bx, Cy - By)
Dx = Ax + Cx - Bx
Dy = Ay + Cy - By
参考文献: https://math.stackexchange.com/questions/887095/find-the-4th-vertex-of-the-parallelogram 以下是上述方法的实现:
// C++ program to find missing point
// of a parallelogram
#include <bits/stdc++.h>
using namespace std;
// main method
int main()
{
int ax = 5, ay = 0; //coordinates of A
int bx = 1, by = 1; //coordinates of B
int cx = 2, cy = 5; //coordinates of C
cout << ax + cx - bx << ", "
<< ay + cy - by;
return 0;
}
输出:
6、4
时间复杂度: O(1)
辅助空间: O(1)
如果您喜欢此文章,请收藏、点赞、评论,谢谢,祝您快乐每一天。
1330

被折叠的 条评论
为什么被折叠?



