给定三个坐标点 A、B 和 C,求缺失点 D,使得 ABCD 可以构成平行四边形。
如果您喜欢此文章,请收藏、点赞、评论,谢谢,祝您快乐每一天。
示例:
输入: A = (1, 0)
B = (1, 1)
C = (0, 1)输出: 0, 0
解释:
三个输入点与点 (0, 0) 形成一个单位正方形输入: A = (5, 0)
B = (1, 1)
C = (2, 5)输出: 6, 4
如下图所示,可能有多种输出,我们需要打印其中的任意一种。

如果四边形的对边平行且长度相等,则该四边形称为平行四边形。

给定平行四边形的三个点,我们就能求出缺失边的斜率以及它们的长度。
该算法解释如下:
设 R 为缺失点。根据定义,我们有
• PR 的长度 = QS 的长度 = L1 (对边相等)
• PR 的斜率 = QS 的斜率 = M1 (对边平行)
• PQ 的长度 = RS 的长度 = L2(对边相等)
• PQ 的斜率 = RS 的斜率 = M2 (对边平行)
因此,我们可以找到距离 P 点 L1 且斜率为 M1 的点,如下文所述:
在给定斜率的直线上,找到给定距离的点:
Javascript 在给定斜率的线上找到给定距离处的点:https://blog.youkuaiyun.com/hefeng_aspnet/article/details/149936134
C# 在给定斜率的线上找到给定距离处的点:https://blog.youkuaiyun.com/hefeng_aspnet/article/details/149936112
Python 在给定斜率的线上找到给定距离处的点:https://blog.youkuaiyun.com/hefeng_aspnet/article/details/149936088
Java 在给定斜率的线上找到给定距离处的点:https://blog.youkuaiyun.com/hefeng_aspnet/article/details/149936046
C++ 在给定斜率的线上找到给定距离处的点:https://blog.youkuaiyun.com/hefeng_aspnet/article/details/149935654
现在,其中一个点将满足上述条件,这很容易检查(使用条件 3 或 4)。
以下是上述方法的实现:
# Python program to find missing point of a
# parallelogram
import math as Math
FLOAT_MAX = 3.40282e+38
# given a source point, slope(m) of line
# passing through it this function calculates
# and return two points at a distance l away
# from the source
def findPoints(source, m, l):
a = [0] * (2)
b = [0] * (2)
# slope is 0
if (m == 0):
a[0] = source[0] + l
a[1] = source[1]
b[0] = source[0] - l
b[1] = source[1]
# slope if infinity
elif (m == FLOAT_MAX):
a[0] = source[0]
a[1] = source[1] + l
b[0] = source[0]
b[1] = source[1] - l
# normal case
else:
dx = (l / ((1 + (m * m)) ** 0.5))
dy = m * dx
a[0] = source[0] + dx
a[1] = source[1] + dy
b[0] = source[0] - dx
b[1] = source[1] - dy
return [a, b]
# given two points, this function calculates
# the slope of the line/ passing through the
# points
def findSlope(p, q):
if (p[1] == q[1]):
return 0
if (p[0] == q[0]):
return FLOAT_MAX
return (q[1] - p[1]) / (q[0] - p[0])
# calculates the distance between two points
def findDistance(p, q):
return Math.sqrt(Math.pow((q[0] - p[0]), 2) + Math.pow((q[1] - p[1]), 2))
# given three points, it prints a point such
# that a parallelogram is formed
def findMissingPoint(a, b, c):
# calculate points originating from a
d = findPoints(a, findSlope(b, c), findDistance(b, c))
# now check which of the two points satisfy
# the conditions
if (findDistance(d[0], c) == findDistance(a, b)):
print(f"{(int)(d[0][0])}, {(int)(d[0][1])}")
else:
print(f"{(int)(d[1][0])}, {(int)(d[1][1])}")
# Driver code
Point1 = [1, 0]
Point2 = [1, 1]
Point3 = [0, 1]
findMissingPoint(Point1, Point2, Point3)
Point1 = [5, 0]
Point2 = [1, 1]
Point3 = [2, 5]
findMissingPoint(Point1, Point2, Point3)
# The code is contributed by Saurabh Jaiswal
输出 :
0, 0
6, 4
时间复杂度: O(log(log n)),因为使用内置的 sqrt 和 log 函数
辅助空间: O(1)
替代方法:

由于对边相等,AD = BC 且 AB = CD,我们可以计算出缺失点 (D) 的坐标:
AD = BC
(Dx - Ax, Dy - Ay) = (Cx - Bx, Cy - By)
Dx = Ax + Cx - Bx
Dy = Ay + Cy - By
参考文献: https://math.stackexchange.com/questions/887095/find-the-4th-vertex-of-the-parallelogram 以下是上述方法的实现:
# Python 3 program to find missing point
# of a parallelogram
# Main method
if __name__ == "__main__":
# coordinates of A
ax, ay = 5, 0
# coordinates of B
bx ,by = 1, 1
# coordinates of C
cx ,cy = 2, 5
print(ax + cx - bx , ",", ay + cy - by)
# This code is contributed by Smitha
输出:
6、4
时间复杂度: O(1)
辅助空间: O(1)
如果您喜欢此文章,请收藏、点赞、评论,谢谢,祝您快乐每一天。
971

被折叠的 条评论
为什么被折叠?



