11、数据降维中的映射解读与应力函数

数据降维中的映射解读与应力函数

1. 映射解读相关内容

1.1 图显示的优势

与逐点聚合相比,图的显示能直观呈现对于给定的 κ 值,邻域的范围大小。这有助于解读相关质量指标的映射值,因为有效邻域大小并非总是显而易见,尤其是当邻域由邻居数量而非固定半径定义时。

1.2 失真度量的影响

失真度量指标用于衡量失真情况,它可分解为失真严重程度和关键权重:
- 失真严重程度 :评估一对关系中失真的严重程度,主要取决于图像排名(如 F 的 ρij 和 M 的 rij,范围在 0 到 N - 1 之间)。对于精度和召回率,严重程度是二元度量,区分图像排名高于或低于 κ 的值。这会导致轻度失真和最严重失真表现相同,与无失真情况差异很大,影响可靠映射簇的识别。而可信度和连续性引入了更连续的严重程度度量,通过计算邻域外排名的正部分,能区分轻度和重度失真,便于发现可靠映射簇。
- 关键权重 :考虑在映射中保留该关系的重要性。在 MRRE 失真度量中,关键权重随参考排名变化,通过边的宽度编码,使得检索图中相邻映射邻居和相关性图中相邻数据邻居之间的边比其他边更粗。

1.3 视觉杂乱问题及解决方法

1.3.1 视觉杂乱问题

当点的数量 N、邻居数量 κ 或失真程度增加时,MING 图由于视觉杂乱变得难以阅读,大量的边交叉和重叠使得难以跟踪单个边,尤其是相关性图中不可靠的边。

1.3.2 解决方法
  • 交互式边过滤
本课题设计了一种利用Matlab平台开发的植物叶片健康状态识别方案,重点融合了色彩纹理双重特征以实现对叶片病害的自动化判别。该系统构建了直观的图形操作界面,便于用户提交叶片影像并快速获得分析结论。Matlab作为具备高效数值计算数据处理能力的工具,在图像分析模式分类领域应用广泛,本项目正是借助其功能解决农业病害监测的实际问题。 在色彩特征分析方面,叶片影像的颜色分布常其生理状态密切相关。通常,健康的叶片呈现绿色,而出现黄化、褐变等异常色彩往往指示病害或虫害的发生。Matlab提供了一系列图像处理函数,例如可通过色彩空间转换直方图统计来量化颜色属性。通过计算各颜色通道的统计参数(如均值、标准差及主成分等),能够提取具有判别力的色彩特征,从而为不同病害类别的区分提供依据。 纹理特征则用于描述叶片表面的微观结构形态变化,如病斑、皱缩或裂纹等。Matlab中的灰度共生矩阵计算函数可用于提取对比度、均匀性、相关性等纹理指标。此外,局部二值模式Gabor滤波等方法也能从多尺度刻画纹理细节,进一步增强病害识别的鲁棒性。 系统的人机交互界面基于Matlab的图形用户界面开发环境实现。用户可通过该界面上传待检图像,系统将自动执行图像预处理、特征抽取分类判断。采用的分类模型包括支持向量机、决策树等机器学习方法,通过对已标注样本的训练,模型能够依据新图像的特征向量预测其所属的病害类别。 此类课题设计有助于深化对Matlab编程、图像处理技术模式识别原理的理解。通过完整实现从特征提取到分类决策的流程,学生能够将理论知识实际应用相结合,提升解决复杂工程问题的能力。总体而言,该叶片病害检测系统涵盖了图像分析、特征融合、分类算法及界面开发等多个技术环节,为学习掌握基于Matlab的智能检测技术提供了综合性实践案例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值