【opencv 450 Image Processing】Point Polygon Test

本文介绍如何使用OpenCV的pointPolygonTest函数检测点与多边形的关系,并计算点到多边形轮廓的距离,通过绘制距离图来直观展示。

Goal

在本教程中,您将学习如何:

使用 OpenCV 函数 cv::pointPolygonTest

Theory

Code

本教程代码如下所示。 你也可以从这里下载https://github.com/opencv/opencv/tree/4.x/samples/cpp/tutorial_code/ShapeDescriptors/pointPolygonTest_demo.cpp

/**
 * @function pointPolygonTest_demo.cpp
 * @brief 使用 pointPolygonTest 函数的演示代码...相当简单
 * @author OpenCV team
 */

#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>

using namespace cv;
using namespace std;

/**
 * @function main
 */
int main( void )
{
    /// 创建图像
    const int r = 100;
    Mat src = Mat::zeros( Size( 4*r, 4*r ), CV_8U );

    /// 创建一系列点以制作轮廓 Create a sequence of points to make a contour
    vector<Point2f> vert(6);
    vert[0] = Point( 3*r/2, static_cast<int>(1.34*r) );
    vert[1] = Point( 1*r, 2*r );
    vert[2] = Point( 3*r/2, static_cast<int>(2.866*r) );
    vert[3] = Point( 5*r/2, static_cast<int>(2.866*r) );
    vert[4] = Point( 3*r, 2*r );
    vert[5] = Point( 5*r/2, static_cast<int>(1.34*r) );

    /// 在 src 中绘制
    for( int i = 0; i < 6; i++ )
    {
        line( src, vert[i],  vert[(i+1)%6], Scalar( 255 ), 3 );//封闭多边形
    }

    /// 获取轮廓 Get the contours
    vector<vector<Point> > contours;
    findContours( src, contours, RETR_TREE, CHAIN_APPROX_SIMPLE);//预先知道只有一个轮廓

    ///计算到轮廓的距离  Calculate the distances to the contour
    Mat raw_dist( src.size(), CV_32F );
    for( int i = 0; i < src.rows; i++ )
    {
        for( int j = 0; j < src.cols; j++ )
        {   //像素值 为 点到轮廓的距离 。                       pointPolygonTest 检测点是否在轮廓内
            raw_dist.at<float>(i,j) = (float)pointPolygonTest( contours[0], Point2f((float)j, (float)i), true );
        }
    }

    double minVal, maxVal;
    Point maxDistPt; // 内接圆心 inscribed circle center
    minMaxLoc(raw_dist, &minVal, &maxVal, NULL, &maxDistPt);//找到图像的最小最大像素值 以及最大像素值的点
    minVal = abs(minVal);//取绝对值。 轮廓外最大距离
    maxVal = abs(maxVal);//轮廓内最大距离

    ///以图形方式描述距离  Depicting the  distances graphically
    Mat drawing = Mat::zeros( src.size(), CV_8UC3 );//三通道黑色背景图
    for( int i = 0; i < src.rows; i++ )
    {
        for( int j = 0; j < src.cols; j++ )
        {
            if( raw_dist.at<float>(i,j) < 0 )//轮廓外的点    第i行第j列灰度图 像素值为负
            {   //B通道         (255-距离)*255/最大距离
                drawing.at<Vec3b>(i,j)[0] = (uchar)(255 - abs(raw_dist.at<float>(i,j)) * 255 / minVal);
            }
            else if( raw_dist.at<float>(i,j) > 0 )//轮廓内的点
            {  //R通道   (255-距离)*255/最大距离
                drawing.at<Vec3b>(i,j)[2] = (uchar)(255 - raw_dist.at<float>(i,j) * 255 / maxVal);
            }
            else//轮廓上的点  白色
            {
                drawing.at<Vec3b>(i,j)[0] = 255;
                drawing.at<Vec3b>(i,j)[1] = 255;
                drawing.at<Vec3b>(i,j)[2] = 255;
            }
        }
    }
    circle(drawing, maxDistPt, (int)maxVal, Scalar(255,255,255));//绘制 白色的圆  

    /// 显示结果
    imshow( "Source", src );
    imshow( "Distance and inscribed circle", drawing );

    waitKey();
    return 0;
}

Explanation

Result

 

 参考:

opencv函数

pointPolygonTest: OpenCV学习三十三:pointPolygonTest 检测点是否在轮廓内_Thomas会写字的博客-优快云博客_pointpolygontest

C++: double pointPolygonTest(InputArray contour, Point2f pt, bool measureDist)

用于测试一个点是否在多边形中

当measureDist设置为true时,返回实际距离值。若返回值为正,表示点在多边形内部,返回值为负,表示在多边形外部,返回值为0,表示在多边形上。

当measureDist设置为false时,返回 -1、0、1三个固定值。若返回值为+1,表示点在多边形内部,返回值为-1,表示在多边形外部,返回值为0,表示在多边形上。

#pragma region #include <iostream> #include <opencv4/opencv2/core/core.hpp> #include <opencv4/opencv2/highgui.hpp> #include <opencv4/opencv2/opencv.hpp> #include <opencv4/opencv2/imgproc/types_c.h> #include "pigpio.h" #include <thread> #include <cmath> #include <chrono> #include <time.h> #include <stdio.h> #include <stdlib.h> #include <fcntl.h> #include <unistd.h> #include <assert.h> #include <termios.h> #include <string.h> #include <sys/time.h> #include <time.h> #include <sys/types.h> #include <errno.h> #include <signal.h> using namespace std; using namespace cv; #pragma endregion #define BAUD 9600//串口波特率 #pragma region int MAX_YU = 140; int MIN_YU = 60; // PID 各个数值 float kk1 = 0, kk2 = 0, bb1 = 0, bb2 = 0, ll1 = 0, ll2 = 0; float kr = 0.00000001, kl = -0.0000001, lr = 0, ll = 0, br, bl; bool flag_avoid = false; // 躲避锥桶标志位 bool flag_zhang = false; // 未知 bool flag_voidcount = false; // 未知 bool flag_ren = false; // 人行道判断标志位 bool flag_yellow = false; double limit_voidtime = 0.17; bool flag_start; // 判断蓝色挡板标志位 bool flag_count; // 未知 double time_void = 100; // 未知 double angle; // 计算得到的角度 double angle_bi; // 避障角度 double angle_cover; //?????????? double speed_avoid = 10050; //??????? // double speed_delay = 10200;//????????????????? double heigth; double kuan; double low = 0, high = 0; Mat kernel_3 = Mat::ones(cv::Size(3, 3), CV_8U); Mat kernel = getStructuringElement(MORPH_RECT, Size(1, 1)); int shu = 0; int sum_avoid = 0; double width, x_r, x_l; //,heigth; Mat frame, ca; static int ret; static int GPS; char r_buf[1024]; FILE* fp; double angle_x = 0; //???????y?? float a[3], w[3], Angle[3], h[3]; int flag_picture, duo_flag; // Rect list;cd ~ double speed_mid = 10000; // 10800;//10600;//10200;//10400;//10450;//10600; double speed_init = 9000; // 10800 double kp1 = 0.11; // 0.18;//0.12;//0.08;//0.;//0.12; double kd1 = 0.08; // 0.05; double minavoid_angle = 10; // 50 = 90 - 40 double maxavoid_angle = 10; // 110 = 90 + 20 // int flagl = 0, flagr = 0; double last_error2 = 0; double kp2 = 0.16; // 0.155;//0.155;//0.18;//0.12;//0.08;//0.;//0.12; double kd2 = 0.1; // 0.2;//0.05; double minhui_angle = 30; // 50 = 90 - 40 double maxhui_angle = 20; // 110 = 90 + 20 clock_t start_, end_, mid_time; static void on(int, void*); //double picture(); void GetROI(Mat src, Mat& ROI); double PID(double error1); vector<Point2f> get_lines_fangcheng(vector<Vec4i> lines); void Set_gpio(); Rect Obstacles(Mat img); int car_start(Mat img); // 车辆启动 int stop(Mat img); Rect blue(Mat img); // 识别蓝色挡板 Rect yellow(Mat img); // 识别黄色挡板 int uart_open(int fd, const char* pathname); // 打开串口 int uart_set(int fd, int nSpeed, int nBits, char nEvent, int nStop); // 串口设置 int uart_close(int fd); // 串口关闭 int send_data(int fd, char* send_buffer, int length); // 发送数据?未启用 int recv_data(int fd, char* recv_buffer, int length); // 没用 void ParseData(char chr); void Init(); void Data(int signal); bool crossing(Mat image); // 识别人行横道 void Control(int flag); void Control_avoid(); // 避障 void Control_cover(); void Control_stop(); // 停止 double Bi_Control(double len); // 锥桶避障 void Control_avoid(); void Control_Hui(void); //line_error=100; string str = "sudo cp /home/pi/.Xauthority /root/"; int flag = system(str.c_str()); #pragma endregion //5G Mat img, img_HSV, img_HSV_mask, img_combined, img_per, img_clone, warped; int start_flag = 1, find_blue_card_flag = 0, cross_flag = 0, music_flag = 0, avoid_flag = 0, car_blake_flag = 0; int LAB_Bmin = 190, LAB_Bmax = 255, HSL_Lmin = 157, HSL_Lmax = 255; int TIMECOUNT = 0; //定时器延时 int line_error = 0, line_error1 = 0, line_last_error = 0, line_last_error1 = 0; float center_x = 0, left_x = 0, right_x = 0; int line_y=190; int rail_width_pix=56; Point mousePos(0, 0); double kp = 0.28; // 0.155;//0.11?????;//0.16;//0.2;//0.3;//0.1???? 0.3???? double kd = 0.04; // 0.1;//0 ????? double min_angle = 30; // 80 90 - 10 double max_angle = 30; // 100 int Angle_Z; void cd(char* path) { chdir(path); } bool crossing(Mat image) { Mat roi, labels, stats, centroids, hui; GetROI(image, roi); //imshow("roi", roi); cvtColor(roi, hui, COLOR_BGR2GRAY); Mat binaryImage; threshold(hui, binaryImage, 180, 255, cv::THRESH_BINARY); imshow("binaryImage", binaryImage); int numComponents = cv::connectedComponentsWithStats(binaryImage, labels, stats, centroids); int crossingnum = 0; for (int i = 1; i < numComponents; i++) { int area = stats.at<int>(i, cv::CC_STAT_AREA); if (area > 200) { crossingnum++; } // cout<<area<<endl; } cout << "CrossingNum:" << crossingnum << endl; if (crossingnum >= 4) { cout << "find crossing" << endl; return true; } return false; } void gpio_init(void) { if (gpioInitialise() < 0) exit(1); gpioSetMode(13, PI_OUTPUT); gpioSetPWMrange(13, 40000); gpioSetPWMfrequency(13, 200); gpioPWM(13,12000); gpioDelay(1000000); gpioSetMode(22, PI_OUTPUT); gpioSetPWMfrequency(22, 50); gpioSetPWMrange(22, 1000); gpioPWM(22, 75); // gpioSetMode(23, PI_OUTPUT); gpioSetPWMfrequency(23, 50); gpioSetPWMrange(23, 1000); gpioPWM(23, 70); //大上下小 gpioSetMode(12, PI_OUTPUT); // 设置GPIO12为PWM输出 gpioSetPWMfrequency(12, 50); // 50Hz标准频率 gpioSetPWMrange(12, 30000); // 设置PWM范围 printf("GPIO initial successful"); } void steering(int angle) { double value = (0.5 + (2.0 / 180.0) * angle) / 20 * 30000; // 100;//20000 gpioPWM(12, value); } void Start_motor(void) { cout << "1" << endl; gpioPWM(13, 10400); //gpioDelay(1000000); /*for (int x = 12000; x >= 9000; x -= 300) { cout << x << endl; gpioPWM(13, x); gpioDelay(500000); }*/ // 第二次启动时,可以注释掉 下面部分 //cout << "2" << endl; //gpioPWM(13, 12000); //gpioDelay(1000000); // 到此为止 //cout << "3" << endl; //gpioPWM(13, 11000); //gpioDelay(1000000); //cout << "4" << endl; //gpioPWM(13, 10300); //double value = speed_init; // ???动慢??? //gpioPWM(13, value); } void Control_stop(void) { gpioPWM(13, 12600); // 刹车 gpioDelay(50000); gpioPWM(13, 12200); // 保护 //gpioDelay(3000000); //gpioPWM(13, speed_mid); // 冲刺 } int uart_open(int fd, const char* pathname) { fd = open(pathname, O_RDWR | O_NOCTTY); if (-1 == fd) { perror("Can't Open Serial Port"); return(-1); } else printf("open %s success!\n", pathname); if (isatty(STDIN_FILENO) == 0) printf("standard input is not a terminal device\n"); else printf("isatty success!\n"); return fd; } int uart_set(int fd, int nSpeed, int nBits, char nEvent, int nStop) { struct termios newtio, oldtio; if (tcgetattr(fd, &oldtio) != 0) { perror("SetupSerial 1"); printf("tcgetattr( fd,&oldtio) -> %d\n", tcgetattr(fd, &oldtio)); return -1; } bzero(&newtio, sizeof(newtio)); newtio.c_cflag |= CLOCAL | CREAD; newtio.c_cflag &= ~CSIZE; switch (nBits) { case 7: newtio.c_cflag |= CS7; break; case 8: newtio.c_cflag |= CS8; break; } switch (nEvent) { case 'o': case 'O': newtio.c_cflag |= PARENB; newtio.c_cflag |= PARODD; newtio.c_iflag |= (INPCK | ISTRIP); break; case 'e': case 'E': newtio.c_iflag |= (INPCK | ISTRIP); newtio.c_cflag |= PARENB; newtio.c_cflag &= ~PARODD; break; case 'n': case 'N': newtio.c_cflag &= ~PARENB; break; default: break; } /*设置波特率*/ switch (nSpeed) { case 2400: cfsetispeed(&newtio, B2400); cfsetospeed(&newtio, B2400); break; case 4800: cfsetispeed(&newtio, B4800); cfsetospeed(&newtio, B4800); break; case 9600: cfsetispeed(&newtio, B9600); cfsetospeed(&newtio, B9600); break; case 115200: cfsetispeed(&newtio, B115200); cfsetospeed(&newtio, B115200); break; case 460800: cfsetispeed(&newtio, B460800); cfsetospeed(&newtio, B460800); break; default: cfsetispeed(&newtio, B9600); cfsetospeed(&newtio, B9600); break; } if (nStop == 1) newtio.c_cflag &= ~CSTOPB; else if (nStop == 2) newtio.c_cflag |= CSTOPB; newtio.c_cc[VTIME] = 0; newtio.c_cc[VMIN] = 0; tcflush(fd, TCIFLUSH); if ((tcsetattr(fd, TCSANOW, &newtio)) != 0) { perror("com set error"); return -1; } printf("set done!\n"); return 0; } int uart_close(int fd) { assert(fd); close(fd); return 0; } int send_data(int fd, char* send_buffer, int length) { length = write(fd, send_buffer, length * sizeof(unsigned char)); return length; } int recv_data(int fd, char* recv_buffer, int length) { length = read(fd, recv_buffer, length); return length; } void Control_Xun(void) { int angle = kp * line_error + kd * (line_error - line_last_error); line_last_error = line_error; angle = 90 - angle; if (angle > 90 + max_angle) // 130 angle = 90 + max_angle; if (angle < 90 - min_angle) angle = 90 - min_angle; //cout <<"line_error"<<line_error<<"angle:" << angle << endl; //cout << "循迹处理完毕" << endl; steering(angle); } void Control_avoid(void) { int angle = kp1 * line_error1 + kd1 * (line_error1 - line_last_error1); // PID 公式 line_last_error1 = line_error1; angle = 90 - angle; if (angle > 90 + max_angle) // 130 angle = 90 + max_angle; if (angle < 90 - min_angle) angle = 90 - min_angle; cout << "avoid_angle:" << angle << endl; steering(angle); } void GetROI(Mat src, Mat& ROI) { // 取得源图像的长和宽 int width = src.cols; int height = src.rows; Rect rect(Point(0, (height / 20) * 10), Point(width, (height / 20) * 17)); // 按比例截取 ROI = src(rect); // 赋值ROI } vector<Point2f> get_lines_fangcheng(vector<Vec4i> lines) { // 遍历概率霍夫变换检测到的直线 float k = 0; // 斜率 float b = 0; // 截距 vector<Point2f> lines_fangcheng; for (unsigned int i = 0; i < lines.size(); i++) { k = (double)(lines[i][3] - lines[i][1]) / (double)(lines[i][2] - lines[i][0]); b = (double)lines[i][1] - k * (double)lines[i][0]; lines_fangcheng.push_back(Point2f(k, b)); } return lines_fangcheng; } Rect blue(Mat img) { Mat HSV, roi; GetROI(img, roi); cvtColor(roi, HSV, COLOR_BGR2HSV); Scalar Lower(90, 50, 50); Scalar Upper(130, 255, 255); Mat mask; inRange(HSV, Lower, Upper, mask); Mat erosion_dilation; erode(mask, erosion_dilation, kernel_3, Point(-1, -1), 1, BORDER_CONSTANT, morphologyDefaultBorderValue()); dilate(erosion_dilation, erosion_dilation, kernel_3, Point(-1, -1), 1, BORDER_CONSTANT, morphologyDefaultBorderValue()); Mat target; bitwise_and(roi, roi, target, erosion_dilation); Mat binary; threshold(erosion_dilation, binary, 127, 255, THRESH_BINARY); imshow("blue", binary); vector<vector<Point>> contours; findContours(binary, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); int maxContourIndex = -1; double maxContourArea = 0.0; for (int i = 0; i < contours.size(); i++) { double area = cv::contourArea(contours[i]); if (area > maxContourArea) { maxContourArea = area; maxContourIndex = i; } } if (maxContourIndex != -1) { return boundingRect(contours[maxContourIndex]); } else { return Rect(); } } int car_start(Mat img) { Rect start_flag = blue(img); // cout << start_flag.width << " " << start_flag.height << endl; if (start_flag.width > 50 && start_flag.height > 50) { return 0; // ?????????? } return 1; // ????????I???? } void camera(int angl_x, int angl_y) { gpioPWM(22, angl_x);//大左小右 gpioPWM(23, angl_y); //大上下小 } void GPS_init(void) { char r_buf[1024]; bzero(r_buf, 1024); GPS = uart_open(GPS, "/dev/ttyUSB0");/*串口号/dev/ttySn,USB口号/dev/ttyUSBn */ if (GPS == -1) { fprintf(stderr, "GPS error\n"); exit(EXIT_FAILURE); } if (uart_set(GPS, BAUD, 8, 'N', 1) == -1) { fprintf(stderr, "GPS set failed!\n"); exit(EXIT_FAILURE); } } void Get_GPS_data(void) { while(1) { ret = recv_data(GPS, r_buf, 44); if (ret == -1) { fprintf(stderr, "uart read failed!\n"); exit(EXIT_FAILURE); } for (int i = 0; i < ret; i++) ParseData(r_buf[i]); usleep(1000); } //usleep(1000); } void audio(void) { system("omxplayer /home/pi/car435/car.wav"); } Mat HLS_Lthresh(const cv::Mat& img, int min_thresh = 220, int max_thresh = 255) { Mat hls; cvtColor(img, hls, COLOR_BGR2HLS); vector<Mat> channels; split(hls, channels); Mat l_channel = channels[1]; double minVal, maxVal; minMaxLoc(l_channel, &minVal, &maxVal); l_channel.convertTo(l_channel, CV_8UC1, 255.0 / maxVal); Mat binary_output = Mat::zeros(l_channel.size(), CV_8UC1); inRange(l_channel, min_thresh, max_thresh, binary_output); return binary_output; } Mat LAB_BThreshold(const Mat& img, int min_thresh = 190, int max_thresh = 255) { Mat lab; cvtColor(img, lab, COLOR_BGR2Lab); vector<Mat> lab_channels; split(lab, lab_channels); Mat b_channel = lab_channels[2]; //cout<<b_channel<<endl; double maxVal; minMaxLoc(b_channel, nullptr, &maxVal); //cout<<maxVal<<endl; if (maxVal > 175) { b_channel.convertTo(b_channel, CV_8UC1, 255.0 / maxVal); } Mat binary_output = Mat::zeros(b_channel.size(), CV_8UC1); inRange(b_channel, min_thresh, max_thresh, binary_output); return binary_output; } Mat combineThresholds(const Mat& img_LThresh, const Mat& img_BThresh) { Mat combined = Mat::zeros(img_BThresh.size(), CV_8UC1); bitwise_or(img_LThresh, img_BThresh, combined); return combined; } struct LaneData { vector<Point> left_points; vector<Point> right_points; vector<float> left_fit; vector<float> right_fit; vector<float> mid_fit; vector<Rect> left_windows; vector<Rect> right_windows; }; Mat getHistogram(const Mat& binary_img){ Mat hist; reduce(binary_img.rowRange(binary_img.rows / 2, binary_img.rows), hist, 0, REDUCE_SUM, CV_32S); return hist; } pair<int, int> findLaneBases(const Mat& hist) { int midpoint = hist.cols / 2; int quarter = midpoint / 2; Point left_base, right_base; minMaxLoc(hist.colRange(quarter, midpoint), 0, 0, 0, &left_base); minMaxLoc(hist.colRange(midpoint, midpoint + quarter), 0, 0, 0, &right_base); return { left_base.x + quarter, right_base.x + midpoint }; } LaneData slidingWindow(const Mat& binary_img, int nwindows = 9, int margin = 20, int minpix = 10) { LaneData result; auto [leftx, rightx] = findLaneBases(getHistogram(binary_img)); //cout<<"leftx:"<<leftx<<"rightx:"<<rightx<<endl; int window_height = binary_img.rows / nwindows; vector<Point> nonzero; findNonZero(binary_img, nonzero); for (int i = 0; i < nwindows; ++i) { int win_y_low = binary_img.rows - (i + 1) * window_height; int win_y_high = binary_img.rows - i * window_height; Rect left_win(leftx - margin, win_y_low, 2 * margin, window_height); Rect right_win(rightx - margin, win_y_low, 2 * margin, window_height); result.left_windows.push_back(left_win); result.right_windows.push_back(right_win); for (const auto& pt : nonzero) { if (left_win.contains(pt)) result.left_points.push_back(pt); if (right_win.contains(pt)) result.right_points.push_back(pt); } if (result.left_points.size() > minpix) leftx = mean(result.left_points)[0]; if (result.right_points.size() > minpix) rightx = mean(result.right_points)[0]; } return result; } vector<float> polyFit(const vector<Point>& points, int order = 2) { if (points.size() < order + 1) { cout << "data no enough for" << order << "profit" << endl; return {}; } Mat A(points.size(), order + 1, CV_32F); Mat B(points.size(), 1, CV_32F); for (size_t i = 0; i < points.size(); ++i) { float y = points[i].y; A.at<float>(i, 0) = y * y; A.at<float>(i, 1) = y; A.at<float>(i, 2) = 1.0f; B.at<float>(i, 0) = points[i].x; } Mat coeff; solve(A, B, coeff, DECOMP_SVD); //solve(A, B, coeff, DECOMP_QR); return { coeff.at<float>(0), coeff.at<float>(1), coeff.at<float>(2) }; } vector<float> calculateCenterLaneCoefficient(const vector<float>& left_fit, const vector<float>& right_fit) { if (left_fit.size() != 3 || right_fit.size() != 3) { cout << "Invalid polynomial coefficients" << endl; return {}; } vector<float> center_fit(3); center_fit[0] = (left_fit[0] + right_fit[0]) / 2.0f; // A 系数 center_fit[1] = (left_fit[1] + right_fit[1]) / 2.0f; // B 系数 center_fit[2] = (left_fit[2] + right_fit[2]) / 2.0f; // C 系数 //cout<<center_fit[0]<<center_fit[1]<<center_fit[2]<<endl; return center_fit; } float calculateXFromPolynomial(const vector<float>& fit, float y) { if (fit.size() != 3) return 0.0f; return fit[0] * y * y + fit[1] * y + fit[2]; } void visualize(Mat& img, const LaneData& data) { // 绘制滑动窗口 // for (const auto& win : data.left_windows) // rectangle(img, win, Scalar(0,255,0), 2); // for (const auto& win : data.right_windows) // rectangle(img, win, Scalar(0,255,0), 2); // 绘制车道线点 for (const auto& pt : data.left_points) circle(img, pt, 3, Scalar(255, 0, 0), -1); for (const auto& pt : data.right_points) circle(img, pt, 3, Scalar(0, 0, 255), -1); // 绘制拟合曲线 if (!data.left_fit.empty()) { for (int y = 0; y < img.rows; ++y) { int x = data.left_fit[0] * y * y + data.left_fit[1] * y + data.left_fit[2]; if (x >= 0 && x < img.cols) circle(img, Point(x, y), 2, Scalar(0, 0, 255), -1); } } if (!data.right_fit.empty()) { for (int y = 0; y < img.rows; ++y) { int x = data.right_fit[0] * y * y + data.right_fit[1] * y + data.right_fit[2]; if (x >= 0 && x < img.cols) circle(img, Point(x, y), 2, Scalar(0, 0, 255), -1); } } circle(img, Point(center_x, line_y), 3, Scalar(0, 255, 0), -1); } bool Contour_Area(vector<Point> contour1, vector<Point> contour2) { return contourArea(contour1) > contourArea(contour2); } Mat customEqualizeHist(const Mat& inputImage, float alpha) { Mat enhancedImage; equalizeHist(inputImage, enhancedImage); return alpha * enhancedImage + (1 - alpha) * inputImage; } void timer(void)//定时器中断 { TIMECOUNT++; std::cout << "timer:" << TIMECOUNT << std::endl; } void reset_timer(void)//定时器中断 { TIMECOUNT = 0; } int timer_interrupt(void)//定时器 { while (true) { //timer(); this_thread::sleep_for(chrono::milliseconds(50)); Control_Xun(); } return 0; } void onTrackbar(int, void*) { LAB_Bmin=getTrackbarPos("LAB_Bmin", "TrackBars"); LAB_Bmax=getTrackbarPos("LAB_Bmax", "TrackBars"); HSL_Lmin=getTrackbarPos("HSL_Lmin", "TrackBars"); HSL_Lmax=getTrackbarPos("HSL_Lmax", "TrackBars"); } void UI_init(void) { namedWindow("TrackBars",WINDOW_NORMAL); resizeWindow("TrackBars", 320, 240); moveWindow("TrackBars", 0, 50); // 设置窗口位置 createTrackbar("LAB_Bmin", "TrackBars", &LAB_Bmin, 255, onTrackbar); setTrackbarPos("LAB_Bmin", "TrackBars", LAB_Bmin); createTrackbar("LAB_Bmax", "TrackBars", &LAB_Bmax, 255, onTrackbar); setTrackbarPos("LAB_Bmax", "TrackBars", LAB_Bmax); createTrackbar("HSL_Lmin", "TrackBars", &HSL_Lmin, 255, onTrackbar); setTrackbarPos("HSL_Lmin", "TrackBars", HSL_Lmin); createTrackbar("HSL_Lmax", "TrackBars", &HSL_Lmax, 255, onTrackbar); setTrackbarPos("HSL_Lmax", "TrackBars", HSL_Lmax); } void onMouse(int event, int x, int y, int flags, void* userdata) { mousePos = Point(x, y); } void test(void) { while(1) { line_error=-100; this_thread::sleep_for(chrono::milliseconds(500)); line_error=100; this_thread::sleep_for(chrono::milliseconds(500)); } } void ParseData(char chr) { static char chrBuf[100]; static unsigned char chrCnt = 0; signed short sData[4]; unsigned char i; time_t now; chrBuf[chrCnt++] = chr; if (chrCnt < 11) return; if ((chrBuf[0] != 0x55) || ((chrBuf[1] & 0x50) != 0x50)) { printf("Error:%x %x\r\n", chrBuf[0], chrBuf[1]); memcpy(&chrBuf[0], &chrBuf[1], 10); chrCnt--; return; } memcpy(&sData[0], &chrBuf[2], 8); switch (chrBuf[1]) { case 0x51: for (i = 0; i < 3; i++) a[i] = (float)sData[i] / 32768.0 * 16.0; time(&now); //printf("\r\nT:%s a:%6.3f %6.3f %6.3f ", asctime(localtime(&now)), a[0], a[1], a[2]); break; case 0x52: for (i = 0; i < 3; i++) w[i] = (float)sData[i] / 32768.0 * 2000.0; //printf("w:%7.3f %7.3f %7.3f ", w[0], w[1], w[2]); break; case 0x53: for (i = 0; i < 3; i++) Angle[i] = (float)sData[i] / 32768.0 * 180.0; //printf("A:%7.3f %7.3f %7.3f ", Angle[0], Angle[1], Angle[2]); Angle_Z=Angle[2]-167; printf("Z:%d \r\n", Angle_Z); break; case 0x54: for (i = 0; i < 3; i++) h[i] = (float)sData[i]; //printf("h:%4.0f %4.0f %4.0f ", h[0], h[1], h[2]); break; } chrCnt = 0; } void find_blue_card(void)//检测到蓝色挡板 { vector<vector<Point>> contours; vector<Vec4i> hierarcy; findContours(img_HSV_mask, contours, hierarcy, RETR_EXTERNAL, CHAIN_APPROX_NONE); if (contours.size() > 0) { sort(contours.begin(), contours.end(), Contour_Area); //cout<<cStart_motorontours.size()<<endl; vector<vector<Point>> newContours; for (const vector<Point>& contour : contours) { Point2f center; float radius; minEnclosingCircle(contour, center, radius); if (center.y > 90 && center.y < 160) { newContours.push_back(contour); } } contours = newContours; if (contours.size() > 0) { if (contourArea(contours[0]) > 500) { cout << "find blue card" << endl; Point2f center; float radius; minEnclosingCircle(contours[0], center, radius); circle(img, center, static_cast<int>(radius), Scalar(0, 255, 0), 2); find_blue_card_flag = 1; } else { cout << "not blue card" << endl; } } } else { cout << "not blue card" << endl; } } void find_blue_card_remove(void)//蓝色挡板移开 { cout << "detecting blue card remove" << endl; vector<vector<Point>> contours; vector<Vec4i> hierarcy; findContours(img_HSV_mask, contours, hierarcy, RETR_EXTERNAL, CHAIN_APPROX_NONE); if (contours.size() > 0) { sort(contours.begin(), contours.end(), Contour_Area); vector<vector<Point>> newContours; for (const vector<Point>& contour : contours) { Point2f center; float radius; minEnclosingCircle(contour, center, radius); if (center.y > 90 && center.y < 160) { newContours.push_back(contour); } } contours = newContours; if (contours.size() == 0) { start_flag = 0; cout << "blue card remove" << endl; //Start_motor(); //sleep(2); } } else { start_flag = 0; cout << "blue card remove" << endl; //Start_motor(); //sleep(2); } } int crossroad(void)//斑马线识别 { VideoCapture capture; capture.open(2); if (!capture.isOpened()) { cout << "Can not open camera" << endl; return -1; } else cout << "camera open successful" << endl; capture.set(cv::CAP_PROP_FOURCC, cv::VideoWriter::fourcc('M', 'J', 'P', 'G')); capture.set(cv::CAP_PROP_FPS, 30); capture.set(cv::CAP_PROP_FRAME_WIDTH, 320); capture.set(cv::CAP_PROP_FRAME_HEIGHT, 240); this_thread::sleep_for(chrono::milliseconds(2000)); //让图像稳定 cout << "Program started" << endl; Mat img_cross; Mat blur; while (1) { capture >> img_cross; GaussianBlur(img_cross, blur, Size(5, 5), 0); Mat hsv; cvtColor(blur, hsv, COLOR_BGR2HSV); Scalar lower_white = Scalar(0, 0, 200); Scalar upper_white = Scalar(180, 40, 255); Mat cross_mask; inRange(hsv, lower_white, upper_white, cross_mask); // Mat edges; // Canny(blur, edges, 50, 150); // bitwise_or(cross_mask, edges, cross_mask); Mat kernel = getStructuringElement(MORPH_RECT, Size(7, 7)); //dilate(mask1, mask1, kernel); //erode(mask1, mask1, kernel); morphologyEx(cross_mask, cross_mask, MORPH_CLOSE, kernel); //Rect roi(0,120,320,120);//shang Rect roi(0,260,640,220);//xia Mat region = cross_mask(roi); //imshow("combined_image", region); //imshow("Full Mask", cross_mask); // 完整图像 //imshow("ROI Region", region); // 仅用于调试检测区 //imshow("combined_image", mask1_roi); int stripe_count = 0, transitions = 0; for (int i = 0; i < region.rows; i++) { transitions = 0; for (int j = 5; j < region.cols - 5; j++) { if (region.at<uchar>(i, j) != region.at<uchar>(i, j - 1)) transitions++; } //cout<<"transitions:"<<transitions<<endl; if (transitions >= 6) stripe_count++; } cross_flag = (stripe_count >= 16) ? 1 : 0; cout << "stripe_count"<<stripe_count<<"cross_flag:" << cross_flag << endl; if (cv::waitKey(1) == 27)break; } gpioTerminate(); capture.release(); // 释放摄像头 destroyAllWindows(); // 关闭所有窗口 //uart_close(GPS); return 0; } Mat per_wt(Mat& frame) { int img_h, img_w; img_clone = frame.clone(); img_h = img_clone.rows; // 图像高度 img_w = img_clone.cols; vector<cv::Point2f> src = { Point2f(125, 198), Point2f(213, 198), Point2f(295, 237), Point2f(55, 237) }; vector<cv::Point2f> dst = { Point2f(100,0), Point2f(img_w - 100, 0), Point2f(img_w - 100, img_h), Point2f(100, img_h) }; // 定义目标坐标(变换后的四个点) vector<cv::Point> polygon; for (const auto& pt : src) { polygon.push_back(Point(static_cast<int>(pt.x), static_cast<int>(pt.y))); } polylines(img_clone, polygon, 1, Scalar(0, 0, 255), 3, cv::LINE_AA); // 计算透视变换矩阵 Mat M = getPerspectiveTransform(src, dst); Mat Minv = getPerspectiveTransform(dst, src); // 应用透视 warpPerspective(frame, warped, M, cv::Size(img_w, img_h), cv::INTER_LINEAR); waitKey(5); return warped; } int find_line(void) //循迹线程 { // 初始化程序 //UI_init(); VideoCapture capture; capture.open(0); if (!capture.isOpened()) { cout << "Can not open camera" << endl; return -1; } else cout << "camera open successful" << endl; capture.set(cv::CAP_PROP_FOURCC, cv::VideoWriter::fourcc('M', 'J', 'P', 'G')); capture.set(cv::CAP_PROP_FPS, 30); capture.set(cv::CAP_PROP_FRAME_WIDTH, 320); capture.set(cv::CAP_PROP_FRAME_HEIGHT, 240); this_thread::sleep_for(chrono::milliseconds(1000)); //让图像稳定 cout << "Program started" << endl; while (1) { capture >> img; if (start_flag == 1) { cvtColor(img, img_HSV, COLOR_BGR2HSV); Scalar HSV_L = Scalar(100, 43, 46); Scalar HSV_H = Scalar(124, 255, 255); inRange(img_HSV, HSV_L, HSV_H, img_HSV_mask); Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 5)); morphologyEx(img_HSV_mask,img_HSV_mask, MORPH_OPEN, kernel); morphologyEx(img_HSV_mask, img_HSV_mask, MORPH_CLOSE, kernel); if (find_blue_card_flag == 0)find_blue_card(); else find_blue_card_remove(); } else { img_per = per_wt(img); Mat HLS_Lresult = HLS_Lthresh(img_per, HSL_Lmin, HSL_Lmax); Mat LAB_Bresult = LAB_BThreshold(img_per, LAB_Bmin, LAB_Bmax); img_combined = combineThresholds(HLS_Lresult, LAB_Bresult); Mat white_image(img.size(), img.type(), Scalar::all(255)); LaneData lanes = slidingWindow(img_combined); lanes.left_fit = polyFit(lanes.left_points); lanes.right_fit = polyFit(lanes.right_points); if (lanes.left_fit.size() != 3 || lanes.right_fit.size() != 3) { if(lanes.left_fit.size() != 3)center_x=lanes.right_fit[0] * line_y * line_y + lanes.right_fit[1]* line_y + lanes.right_fit[2]-rail_width_pix; if(lanes.right_fit.size()!= 3)center_x=lanes.left_fit[0] * line_y * line_y + lanes.left_fit[1]* line_y + lanes.left_fit[2]+rail_width_pix; cout<<center_x<<endl; } if (lanes.left_fit.size() == 3 && lanes.right_fit.size() == 3) { center_x=(lanes.right_fit[0] * line_y * line_y + lanes.right_fit[1]* line_y + lanes.right_fit[2]+lanes.left_fit[0] * line_y * line_y + lanes.left_fit[1]* line_y + lanes.left_fit[2])/2; cout<<center_x<<endl; } line_error = center_x - 160; //cout << left_x << "," << right_x << "," << center_x << "," << line_error << endl; visualize(white_image, lanes); //namedWindow("img", cv::WINDOW_NORMAL); // 创建可调整大小的窗口 //resizeWindow("img", 320, 240); // 设置窗口尺寸 //moveWindow("img", 320, 50); // 设置窗口位置 //imshow("img", img_clone); //namedWindow("combined_image", cv::WINDOW_NORMAL); // 创建可调整大小的窗口 //resizeWindow("combined_image", 320, 240); // 设置窗口尺寸 //moveWindow("combined_image", 640, 50); // 设置窗口位置 //imshow("combined_image", img_combined); //namedWindow("white_image", cv::WINDOW_NORMAL); // 创建可调整大小的窗口 //resizeWindow("white_image", 320, 240); // 设置窗口尺寸 //moveWindow("white_image", 960, 50); // 设置窗口位置 //imshow("white_image", white_image); if(cross_flag==1){Control_stop();audio();break;} } if (cv::waitKey(1) == 27)break; //if(car_blake_flag == 1) ;//break;//结束代码 } gpioTerminate(); capture.release(); // 释放摄像头 destroyAllWindows(); // 关闭所有窗口 //uart_close(GPS); return 0; } int main() { gpioTerminate(); gpio_init(); GPS_init(); camera(72,86); steering(90); thread thread1(find_line);//循迹线程 thread thread2(Get_GPS_data);//test thread thread3(timer_interrupt);//定时器功能 thread thread4(crossroad); thread1.join(); thread2.join(); thread3.join(); thread4.join(); return 0;//GPS_init(); } //取数据调试的main函数 /*int main(void) { UI_init(); gpioTerminate(); gpio_init(); camera(72,86); steering(90); // Mat img = imread("C:/Users/wtcat/CLionProjects/untitled7/test_images/225.jpg",IMREAD_COLOR_BGR); // if(img.empty()) // { // std::cerr << "Error: Could not load the image" << std::endl; // return -1; // } VideoCapture capture; capture.open(2); if (!capture.isOpened()) { cout << "Can not open camera!" << std::endl; return -1; } capture.set(cv::CAP_PROP_FOURCC, cv::VideoWriter::fourcc('M', 'J', 'P', 'G')); capture.set(cv::CAP_PROP_FPS, 30); capture.set(cv::CAP_PROP_FRAME_WIDTH, 320); capture.set(cv::CAP_PROP_FRAME_HEIGHT, 240); this_thread::sleep_for(chrono::milliseconds(1000)); //让图像稳定 Mat img_per,img_combined; string windowName = "XY"; namedWindow(windowName, WINDOW_AUTOSIZE); setMouseCallback(windowName, onMouse, NULL); while (1) { capture>>img; img_per=per_wt(img); string coordText = "X=" + to_string(mousePos.x) + " Y=" + to_string(mousePos.y); putText(img_clone, coordText, Point(15, 35),FONT_HERSHEY_SIMPLEX, 0.7, Scalar(0, 255, 100), 2); moveWindow(windowName, 320, 50); imshow(windowName, img_clone); Mat HLS_Lresult = HLS_Lthresh(img_per,HSL_Lmin,HSL_Lmax); Mat LAB_Bresult = LAB_BThreshold(img_per,LAB_Bmin,LAB_Bmax); img_combined=combineThresholds(HLS_Lresult, LAB_Bresult); //img_combined=HLS_Lresult; Mat white_image(img.size(), img.type(), Scalar::all(255)); LaneData lanes = slidingWindow(img_combined); lanes.left_fit = polyFit(lanes.left_points); lanes.right_fit = polyFit(lanes.right_points); visualize(white_image, lanes); namedWindow("combined_image", cv::WINDOW_NORMAL); // 创建可调整大小的窗口 resizeWindow("combined_image", 320, 240); // 设置窗口尺寸 moveWindow("combined_image", 640, 50); // 设置窗口位置 imshow("combined_image", img_combined); namedWindow("white_image", cv::WINDOW_NORMAL); // 创建可调整大小的窗口 resizeWindow("white_image", 320, 240); // 设置窗口尺寸 moveWindow("white_image", 960,50); // 设置窗口位置 imshow("white_image", white_image); if (cv::waitKey(1) == 27) { break; } //if(car_blake_flag == 1) ;//break;//结束代码 } capture.release(); // 释放摄像头 destroyAllWindows(); // 关闭所有窗口 return 0; }*/ 在该程序中加入蓝锥桶避障程序
最新发布
11-15
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值