D:\miniconda\envs\yolo8\python.exe C:\Users\Administrator\Desktop\正点原子rk3588\2.pt转onnx\ultralytics_yolov8-rk_opt_v1.6\train_v8.py
WARNING no model scale passed. Assuming scale='n'.
from n params module arguments
0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
1 -1 1 2470 ultralytics.nn.modules.AKConv.AKConv [16, 32, 3, 2]
2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True]
3 -1 1 8006 ultralytics.nn.modules.AKConv.AKConv [32, 64, 3, 2]
4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True]
5 -1 1 28294 ultralytics.nn.modules.AKConv.AKConv [64, 128, 3, 2]
6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True]
7 -1 1 105734 ultralytics.nn.modules.AKConv.AKConv [128, 256, 3, 2]
8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True]
9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
10 -1 1 0 ultralytics.nn.SimAM.SimAM [1024]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1]
13 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1]
14 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
15 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1]
16 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1]
17 -1 1 15878 ultralytics.nn.modules.AKConv.AKConv [64, 64, 3, 2]
18 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
19 -1 1 156416 ultralytics.nn.modules.block.C2f [448, 128, 1]
20 -1 1 56326 ultralytics.nn.modules.AKConv.AKConv [128, 128, 3, 2]
21 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1]
22 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1]
23 [15, 18, 21] 1 3481363 ultralytics.nn.modules.head.Detect [1, [192, 448, 384]]
D:\miniconda\envs\yolo8\lib\site-packages\torch\functional.py:534: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\aten\src\ATen\native\TensorShape.cpp:3596.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
AKn summary: 245 layers, 5413031 parameters, 5413015 gradients
AKn summary: 245 layers, 5413031 parameters, 5413015 gradients
New https://pypi.org/project/ultralytics/8.3.203 available Update with 'pip install -U ultralytics'
Ultralytics YOLOv8.0.151 Python-3.10.0 torch-2.5.1+cu118 CUDA:0 (NVIDIA GeForce RTX 3080 Laptop GPU, 16383MiB)
engine\trainer: task=detect, mode=train, model=ultralytics/cfg/models/v8/AKn.yaml, data=mosquito.yaml, epochs=500, patience=50, batch=64, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=runs, name=AKConv+simam, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=rknn, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, tracker=botsort.yaml, save_dir=runs\AKConv+simam3
WARNING no model scale passed. Assuming scale='n'.
from n params module arguments
0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
1 -1 1 2470 ultralytics.nn.modules.AKConv.AKConv [16, 32, 3, 2]
2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True]
3 -1 1 8006 ultralytics.nn.modules.AKConv.AKConv [32, 64, 3, 2]
4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True]
5 -1 1 28294 ultralytics.nn.modules.AKConv.AKConv [64, 128, 3, 2]
6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True]
7 -1 1 105734 ultralytics.nn.modules.AKConv.AKConv [128, 256, 3, 2]
8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True]
9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
10 -1 1 0 ultralytics.nn.SimAM.SimAM [1024]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1]
13 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1]
14 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
15 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1]
16 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1]
17 -1 1 15878 ultralytics.nn.modules.AKConv.AKConv [64, 64, 3, 2]
18 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
19 -1 1 156416 ultralytics.nn.modules.block.C2f [448, 128, 1]
20 -1 1 56326 ultralytics.nn.modules.AKConv.AKConv [128, 128, 3, 2]
21 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1]
22 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1]
23 [15, 18, 21] 1 3481363 ultralytics.nn.modules.head.Detect [1, [192, 448, 384]]
AKn summary: 245 layers, 5413031 parameters, 5413015 gradients
AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n...
C:\Users\Administrator\Desktop\正点原子rk3588\2.pt转onnx\ultralytics_yolov8-rk_opt_v1.6\ultralytics\nn\tasks.py:565: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
return torch.load(file, map_location='cpu'), file # load
[ WARN:0@10.900] global loadsave.cpp:268 cv::findDecoder imread_('C:\Users\Administrator\Desktop\正点原子rk3588\2.pt转onnx\ultralytics_yolov8-rk_opt_v1.6\ultralytics\assets\bus.jpg'): can't open/read file: check file path/integrity
Traceback (most recent call last):
File "C:\Users\Administrator\Desktop\正点原子rk3588\2.pt转onnx\ultralytics_yolov8-rk_opt_v1.6\train_v8.py", line 36, in <module>
main(opt)
File "C:\Users\Administrator\Desktop\正点原子rk3588\2.pt转onnx\ultralytics_yolov8-rk_opt_v1.6\train_v8.py", line 17, in main
results = model.train(data='mosquito.yaml', # 训练参数均可以重新设置
File "C:\Users\Administrator\Desktop\正点原子rk3588\2.pt转onnx\ultralytics_yolov8-rk_opt_v1.6\ultralytics\engine\model.py", line 377, in train
self.trainer.train()
File "C:\Users\Administrator\Desktop\正点原子rk3588\2.pt转onnx\ultralytics_yolov8-rk_opt_v1.6\ultralytics\engine\trainer.py", line 192, in train
self._do_train(world_size)
File "C:\Users\Administrator\Desktop\正点原子rk3588\2.pt转onnx\ultralytics_yolov8-rk_opt_v1.6\ultralytics\engine\trainer.py", line 276, in _do_train
self._setup_train(world_size)
File "C:\Users\Administrator\Desktop\正点原子rk3588\2.pt转onnx\ultralytics_yolov8-rk_opt_v1.6\ultralytics\engine\trainer.py", line 219, in _setup_train
self.amp = torch.tensor(check_amp(self.model), device=self.device)
File "C:\Users\Administrator\Desktop\正点原子rk3588\2.pt转onnx\ultralytics_yolov8-rk_opt_v1.6\ultralytics\utils\checks.py", line 465, in check_amp
assert amp_allclose(YOLO('yolov8n.pt'), im)
File "C:\Users\Administrator\Desktop\正点原子rk3588\2.pt转onnx\ultralytics_yolov8-rk_opt_v1.6\ultralytics\utils\checks.py", line 452, in amp_allclose
a = m(im, device=device, verbose=False)[0].boxes.data # FP32 inference
File "C:\Users\Administrator\Desktop\正点原子rk3588\2.pt转onnx\ultralytics_yolov8-rk_opt_v1.6\ultralytics\engine\model.py", line 98, in __call__
return self.predict(source, stream, **kwargs)
File "D:\miniconda\envs\yolo8\lib\site-packages\torch\utils\_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "C:\Users\Administrator\Desktop\正点原子rk3588\2.pt转onnx\ultralytics_yolov8-rk_opt_v1.6\ultralytics\engine\model.py", line 246, in predict
return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)
File "C:\Users\Administrator\Desktop\正点原子rk3588\2.pt转onnx\ultralytics_yolov8-rk_opt_v1.6\ultralytics\engine\predictor.py", line 197, in __call__
return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one
File "D:\miniconda\envs\yolo8\lib\site-packages\torch\utils\_contextlib.py", line 36, in generator_context
response = gen.send(None)
File "C:\Users\Administrator\Desktop\正点原子rk3588\2.pt转onnx\ultralytics_yolov8-rk_opt_v1.6\ultralytics\engine\predictor.py", line 242, in stream_inference
for batch in self.dataset:
File "C:\Users\Administrator\Desktop\正点原子rk3588\2.pt转onnx\ultralytics_yolov8-rk_opt_v1.6\ultralytics\data\loaders.py", line 240, in __next__
raise FileNotFoundError(f'Image Not Found {path}')
FileNotFoundError: Image Not Found C:\Users\Administrator\Desktop\正点原子rk3588\2.pt转onnx\ultralytics_yolov8-rk_opt_v1.6\ultralytics\assets\bus.jpg
进程已结束,退出代码为 1
最新发布