model.py文件是用keras模块编写的yolo模型文件,主要包含14个函数:
DarknetConv2D:为二维卷积层设置Darknet参数。DarknetConv2D_BN_Leaky:由二维卷积层DarknetConv2D与正则化层BatchNormalization、激活函数LeakyReLU组合而成。resblock_body:封装了一个循环体:包含2个卷积核大小不同的DarknetConv2D_BN_Leakydarknet_body:Darknent网络结构,含有52个二维卷积层。make_last_layers:最后几个函数层,由6个DarknetConv2D_BN_Leaky层和1个Conv2D_linear层组成。yolo_body:yolo网络结构。tiny_yolo_body:tiny_yolo网络结构。yolo_head:将最终网络层特征转换为边界框参数。yolo_correct_boxes:获取正确的边界框。yolo_boxes_and_scores:处理卷积层输出。yolo_eval:在给定的输入和返回过滤框上评估YOLO模型。preprocess_true_boxes:将true_boxes预处理为训练输入格式box_iou:检测框与原标注框的交并比。yolo_loss:模型损失。
详细内容如下:
"""YOLO_v3 Model Defined in Keras."""
from functools import wraps
import numpy as np
import tensorflow as tf
from keras import backend as K
from keras.layers import Conv2D, Add, ZeroPadding2D, UpSampling2D, Concatenate, MaxPooling2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from keras.regularizers import l2
from yolo3.utils import compose
@wraps(Conv2D)
def DarknetConv2D(*args, **kwargs):
"""
Wrapper to set Darknet parameters for Convolution2D.
为2维卷积层设置Darknet参数
返回带有Darknet参数的2维卷积层
"""
darknet_conv_kwargs = {'kernel_regularizer': l2(5e-4)}
darknet_conv_kwargs['padding'] = 'valid' if kwargs.get('strides')==(2,2) else 'same'
darknet_conv_kwargs.update(kwargs)
return Conv2D(*args, **darknet_conv_kwargs) #带有Darknet参数的2维卷积层
def DarknetConv2D_BN_Leaky(*args, **kwargs):
"""
Darknet Convolution2D followed by BatchNormalization and LeakyReLU.
封装3个网络层:
1.带有Darknet参数的2维卷积层
2.批量正则化网络层:按批正则化前一个网络层的激活
3.激活函数层
"""
no_bias_kwargs = {'use_bias': False}
no_bias_kwargs.update(kwargs)
return compose(
DarknetConv2D(*args, **no_bias_kwargs), #带有Darknet参数的2维卷积层
BatchNormalization(), #按批正则化前一个网络层的激活
LeakyReLU(alpha=0.1)) #激活函数
def resblock_body(x, num_filters, num_blocks):
'''
A series of resblocks starting with a downsampling Convolution2D
封装了一个循环体:包含2个卷积核大小不同的DarknetConv2D_BN_Leaky
x:输入的图像张量
num_filters:输出空间的维度
num_blocks:循环次数
本函数包含2个步骤:
1.填充,计算DarknetConv2D_BN_Leaky,输出维度为num_filters的x;
2.循环累加(循环体),将步骤1的输出作为该步骤的初始输入x:
首先计算1*1卷积核,然后将1*1卷积核的结果作为3*3卷积核的输入,计算出结果y
循环累加的初始输入x与得到的y进行相加,将相加结果赋值给x,进入下一次循环
'''
# Darknet uses left and top padding instead of 'same' mode
x = ZeroPadding2D(((1,0),(1,0)))(x) #对2维输入的的左侧和上侧进行0填充,((1,0),(1,0))表示((上,下),(左,右))
x = DarknetConv2D_BN_Leaky(num_filters, (3,3), strides=(2,2))(x) #3*3的卷积核,卷积步长(2,2)
for i in range(num_blocks):
y = compose(
DarknetConv2D_BN_Leaky(num_filters//2, (1,1)), #1*1的卷积核
DarknetConv2D_BN_Leaky(num_filters, (3,3)))(x) #3*3的卷积核
x = Add()([x,y]) #求和,输出维度与x,y一致
return x
def darknet_body(x):
'''
Darknent body having 52 Convolution2D layers
Darknent网络层主干,主要作用是对图像进行特征提取,包含52个2维卷积核层:52=1+3+5+17+17+9
1个DarknetConv2D_BN_Leaky里包含1个2维卷积层,1个批量正则化层,1个激活层
1个resblock_body包含1+2*num_blocks个DarknetConv2D_BN_Leaky
'''
x = DarknetConv2D_BN_Leaky(32, (3,3))(x) #1
x = resblock_body(x, 64, 1) #1+2*1=3
x = resblock_body(x, 128, 2) #1+2*2=5
x = resblock_body(x, 256, 8) #1+2*8=17
x = resblock_body(x, 512, 8) #1+2*8=17
x = resblock_body(x, 1024, 4) #1+2*4=9
return x
def make_last_layers(x, num_filters, out_filters):
'''
6 Conv2D_BN_Leaky layers followed by a Conv2D_linear layer
7个2维卷积层
5个DarknetConv2D_BN_Leaky计算得x
1个DarknetConv2D_BN_Leaky,1个DarknetConv2D计算得y
num_filters:中间卷积层x得输出通道数,也可以理解为特征数量
out_filters:最终层y的通道数
返回x,y
'''
x = compose(
DarknetConv2D_BN_Leaky(num_filters, (1,1)),
DarknetConv2D_BN_Leaky(num_filters*2, (3,3)),
DarknetConv2D_BN_Leaky(num_filters, (1,1)),
DarknetConv2D_BN_Leaky(num_filters*2, (3,3)),
DarknetConv2D_BN_Leaky(num_filters, (1,1)))(x)
y = compose(
DarknetConv2D_BN_Leaky(num_filters*2, (3,3)),
DarknetConv2D(out_filters, (1,1)))(x)
return x, y
def yolo_body(inputs, num_anchors, num_classes):
"""
Create YOLO_V3 model CNN body in Keras.
YOLO_V3卷积神经网络主干,共包含75个卷积层
1.Darknent模型,包含52个卷积层
2.Darknent模型的输出作为make_last_layers输入,输出x,y1,包含7个卷积层
3.将x进行DarknetConv2D_BN_Leaky,UpSampling2D计算,并将结果与Darknent模型的152层的输出进行拼接,得x,包含1个卷积层
4.将输出x作为make_last_layers输入,输出x,y2,包含7个卷积层
5.将x进行DarknetConv2D_BN_Leaky,UpSampling2D计算,并将结果与Darknent模型的92层的输出进行拼接,得x,包含1个卷积层
6.将输出x作为make_last_layers输入,输出x,y3,包含7个卷积层
"""
darknet = Model(inputs, darknet_body(inputs)) #Model(inputs, outputs, name=None)
x, y1 = make_last_layers(darknet.output, 512, num_anchors*(num_classes+5))
x = compose(
DarknetConv2D_BN_Leaky(256, (1,1)),
UpSampling2D(2))(x)
x = Concatenate()([x,darknet.layers[152].output]) #拼接
x, y2 = make_last_layers(x, 256, num_anchors*(num_classes+5))
x = compose(
DarknetConv2D_BN_Leaky(128, (1,1)),
UpSampling2D(2))(x)
x = Concatenate()([x,darknet.layers[92].output])
x, y3 = make_last_layers(x, 128, num_anchors*(num_classes+5))
return Model(inputs, [y1,y2,y3])
def tiny_yolo_body(inputs, num_anchors, num_classes):
'''
Create Tiny YOLO_v3 model CNN body in keras.
轻量级YOLOV3卷积神经网络主干,包含12个卷积层
1.5个DarknetConv2D_BN_Leaky计算得x1
2.将x1作为输入计算3个DarknetConv2D_BN_Leaky得x2
3.将x2作为输入计算DarknetConv2D_BN_Leaky,DarknetConv2D得y1
4.将x2作为输入计算DarknetConv2D_BN_Leaky,UpSampling2D,结果替换x2
5.将[x2,x1]进行Concatenate,DarknetConv2D_BN_Leaky,DarknetConv2D计算得y2
'''
x1 = compose(
DarknetConv2D_BN_Leaky(16, (3,3)),
MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'), #池化层
DarknetConv2D_BN_Leaky(32, (3,3)),
MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
DarknetConv2D_BN_Leaky(64, (3,3)),
MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
DarknetConv2D_BN_Leaky(128, (3,3)),
MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
DarknetConv2D_BN_Leaky(256, (3,3)))(inputs)
x2 = compose(
MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
DarknetConv2D_BN_Leaky(512, (3,3)),
MaxPooling2D(pool_size=(2,2), strides=(1,1), padding='same'),
DarknetConv2D_BN_Leaky(1024, (3,3)),
DarknetConv2D_BN_Leaky(256, (1,1)))(x1)
y1 = compose(
DarknetConv2D_BN_Leaky(512, (3,3)),
DarknetConv2D(num_anchors*(num_classes+5), (1,1)))(x2)
x2 = compose(
DarknetConv2D_BN_Leaky(128, (1,1)),
UpSampling2D(2))(x2)
y2 = compose(
Concatenate(),
DarknetConv2D_BN_Leaky(256, (3,3)),
DarknetConv2D(num_anchors*(num_classes+5), (1,1)))([x2,x1])
return Model(inputs, [y1,y2])
def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False):
"""Convert final layer features to bounding box parameters.
将最终网络层特征转换为边界框参数。
feats:yolov3网络的输出特征y1 or y2 or y3
anchors:聚类所得标注框,默认9个
num_classes:类别数量
input_shape:输入形状
返回检测框的中心坐标xy,宽高wh,置信度,类别概率
"""
num_anchors = len(anchors)
# Reshape to batch, height, width, num_anchors, box_params.
anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])
grid_shape = K.shape(feats)[1:3] # height, width,feats的第2,3个元素,即(width,feats)
grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
[1, grid_shape[1], 1, 1]) #元素复制扩张(width,feats,1,1)
grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
[grid_shape[0], 1, 1, 1])
grid = K.concatenate([grid_x, grid_y]) #拼接
grid = K.cast(grid, K.dtype(feats)) #转换元素类型
feats = K.reshape(
feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])
# Adjust preditions to each spatial grid point and anchor size.
# 调整检测框大小
box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats)) #检测框中心坐标
box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats)) #检测框宽高
box_confidence = K.sigmoid(feats[..., 4:5]) #置信度
box_class_probs = K.sigmoid(feats[..., 5:]) #类别可能性
if calc_loss == True:
return grid, feats, box_xy, box_wh
return box_xy, box_wh, box_confidence, box_class_probs
def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape):
'''
Get corrected boxes
获取更正后的检测框,即对识别结果的检测框进行更正
'''
box_yx = box_xy[..., ::-1]
box_hw = box_wh[..., ::-1]
input_shape = K.cast(input_shape, K.dtype(box_yx)) #输入形状
image_shape = K.cast(image_shape, K.dtype(box_yx)) #图片形状
new_shape = K.round(image_shape * K.min(input_shape/image_shape)) #按比例缩放图片
offset = (input_shape-new_shape)/2./input_shape
scale = input_shape/new_shape
box_yx = (box_yx - offset) * scale
box_hw *= scale
box_mins = box_yx - (box_hw / 2.)
box_maxes = box_yx + (box_hw / 2.)
boxes = K.concatenate([
box_mins[..., 0:1], # y_min
box_mins[..., 1:2], # x_min
box_maxes[..., 0:1], # y_max
box_maxes[..., 1:2] # x_max
])
# Scale boxes back to original image shape.
boxes *= K.concatenate([image_shape, image_shape])
return boxes
def yolo_boxes_and_scores(feats, anchors, num_classes, input_shape, image_shape):
'''
Process Conv layer output
处理卷积层的输出
'''
box_xy, box_wh, box_confidence, box_class_probs = yolo_head(feats,
anchors, num_classes, input_shape)
boxes = yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape)
boxes = K.reshape(boxes, [-1, 4])
box_scores = box_confidence * box_class_probs
box_scores = K.reshape(box_scores, [-1, num_classes])
return boxes, box_scores
def yolo_eval(yolo_outputs,
anchors,
num_classes,
image_shape,
max_boxes=20,
score_threshold=.6,
iou_threshold=.5):
"""
Evaluate YOLO model on given input and return filtered boxes.
评估YOLO模型
"""
num_layers = len(yolo_outputs) #3
anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]] # default setting
input_shape = K.shape(yolo_outputs[0])[1:3] * 32
boxes = []
box_scores = []
# 遍历YOLO模型的3个输出
for l in range(num_layers):
_boxes, _box_scores = yolo_boxes_and_scores(yolo_outputs[l],
anchors[anchor_mask[l]], num_classes, input_shape, image_shape)
boxes.append(_boxes)
box_scores.append(_box_scores)
boxes = K.concatenate(boxes, axis=0)
box_scores = K.concatenate(box_scores, axis=0)
mask = box_scores >= score_threshold #掩码
max_boxes_tensor = K.constant(max_boxes, dtype='int32')
boxes_ = []
scores_ = []
classes_ = []
# 遍历类别
for c in range(num_classes):
# TODO: use keras backend instead of tf.
class_boxes = tf.boolean_mask(boxes, mask[:, c]) #对张量使用布尔掩码进行筛选
class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c])
nms_index = tf.image.non_max_suppression(
class_boxes, class_box_scores, max_boxes_tensor, iou_threshold=iou_threshold)
class_boxes = K.gather(class_boxes, nms_index)
class_box_scores = K.gather(class_box_scores, nms_index)
classes = K.ones_like(class_box_scores, 'int32') * c
boxes_.append(class_boxes)
scores_.append(class_box_scores)
classes_.append(classes)
boxes_ = K.concatenate(boxes_, axis=0)
scores_ = K.concatenate(scores_, axis=0)
classes_ = K.concatenate(classes_, axis=0)
return boxes_, scores_, classes_
def preprocess_true_boxes(true_boxes, input_shape, anchors, num_classes):
'''
Preprocess true boxes to training input format
处理训练数据集输入的标注框
Parameters
----------
true_boxes: array, shape=(m, T, 5)
Absolute x_min, y_min, x_max, y_max, class_id relative to input_shape.
input_shape: array-like, hw, multiples of 32
anchors: array, shape=(N, 2), wh,标注框的宽高
num_classes: integer
Returns
-------
y_true: list of array, shape like yolo_outputs, xywh are reletive value
'''
assert (true_boxes[..., 4]<num_classes).all(), 'class id must be less than num_classes'
num_layers = len(anchors)//3 # default setting
anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]]
true_boxes = np.array(true_boxes, dtype='float32')
input_shape = np.array(input_shape, dtype='int32')
boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2
boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2]
true_boxes[..., 0:2] = boxes_xy/input_shape[::-1]
true_boxes[..., 2:4] = boxes_wh/input_shape[::-1]
m = true_boxes.shape[0]
grid_shapes = [input_shape//{0:32, 1:16, 2:8}[l] for l in range(num_layers)]
y_true = [np.zeros((m,grid_shapes[l][0],grid_shapes[l][1],len(anchor_mask[l]),5+num_classes),
dtype='float32') for l in range(num_layers)]
# Expand dim to apply broadcasting.
anchors = np.expand_dims(anchors, 0)
anchor_maxes = anchors / 2.
anchor_mins = -anchor_maxes
valid_mask = boxes_wh[..., 0]>0
for b in range(m):
# Discard zero rows.
wh = boxes_wh[b, valid_mask[b]]
if len(wh)==0: continue
# Expand dim to apply broadcasting.
wh = np.expand_dims(wh, -2)
box_maxes = wh / 2.
box_mins = -box_maxes
intersect_mins = np.maximum(box_mins, anchor_mins)
intersect_maxes = np.minimum(box_maxes, anchor_maxes)
intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.)
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
box_area = wh[..., 0] * wh[..., 1]
anchor_area = anchors[..., 0] * anchors[..., 1]
iou = intersect_area / (box_area + anchor_area - intersect_area)
# Find best anchor for each true box
best_anchor = np.argmax(iou, axis=-1)
for t, n in enumerate(best_anchor):
for l in range(num_layers):
if n in anchor_mask[l]:
i = np.floor(true_boxes[b,t,0]*grid_shapes[l][1]).astype('int32')
j = np.floor(true_boxes[b,t,1]*grid_shapes[l][0]).astype('int32')
k = anchor_mask[l].index(n)
c = true_boxes[b,t, 4].astype('int32')
y_true[l][b, j, i, k, 0:4] = true_boxes[b,t, 0:4]
y_true[l][b, j, i, k, 4] = 1
y_true[l][b, j, i, k, 5+c] = 1
return y_true
def box_iou(b1, b2):
'''
Return iou tensor
Parameters
----------
b1: tensor, shape=(i1,...,iN, 4), xywh
b2: tensor, shape=(j, 4), xywh
Returns
-------
iou: tensor, shape=(i1,...,iN, j)
'''
# Expand dim to apply broadcasting.
b1 = K.expand_dims(b1, -2)
b1_xy = b1[..., :2]
b1_wh = b1[..., 2:4]
b1_wh_half = b1_wh/2.
b1_mins = b1_xy - b1_wh_half
b1_maxes = b1_xy + b1_wh_half
# Expand dim to apply broadcasting.
b2 = K.expand_dims(b2, 0)
b2_xy = b2[..., :2]
b2_wh = b2[..., 2:4]
b2_wh_half = b2_wh/2.
b2_mins = b2_xy - b2_wh_half
b2_maxes = b2_xy + b2_wh_half
intersect_mins = K.maximum(b1_mins, b2_mins)
intersect_maxes = K.minimum(b1_maxes, b2_maxes)
intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
b1_area = b1_wh[..., 0] * b1_wh[..., 1]
b2_area = b2_wh[..., 0] * b2_wh[..., 1]
iou = intersect_area / (b1_area + b2_area - intersect_area)
return iou
def yolo_loss(args, anchors, num_classes, ignore_thresh=.5, print_loss=False):
'''
Return yolo_loss tensor
Parameters
----------
yolo_outputs: list of tensor, the output of yolo_body or tiny_yolo_body
y_true: list of array, the output of preprocess_true_boxes
anchors: array, shape=(N, 2), wh
num_classes: integer
ignore_thresh: float, the iou threshold whether to ignore object confidence loss
Returns
-------
loss: tensor, shape=(1,)
'''
num_layers = len(anchors)//3 # default setting 3聚类所得的标注框的数量不能改变
yolo_outputs = args[:num_layers]
y_true = args[num_layers:]
anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]]
input_shape = K.cast(K.shape(yolo_outputs[0])[1:3] * 32, K.dtype(y_true[0]))
grid_shapes = [K.cast(K.shape(yolo_outputs[l])[1:3], K.dtype(y_true[0])) for l in range(num_layers)]
loss = 0
m = K.shape(yolo_outputs[0])[0] # batch size, tensor
mf = K.cast(m, K.dtype(yolo_outputs[0]))
for l in range(num_layers):
object_mask = y_true[l][..., 4:5]
true_class_probs = y_true[l][..., 5:]
grid, raw_pred, pred_xy, pred_wh = yolo_head(yolo_outputs[l],
anchors[anchor_mask[l]], num_classes, input_shape, calc_loss=True)
pred_box = K.concatenate([pred_xy, pred_wh])
# Darknet raw box to calculate loss.
raw_true_xy = y_true[l][..., :2]*grid_shapes[l][::-1] - grid
raw_true_wh = K.log(y_true[l][..., 2:4] / anchors[anchor_mask[l]] * input_shape[::-1])
raw_true_wh = K.switch(object_mask, raw_true_wh, K.zeros_like(raw_true_wh)) # avoid log(0)=-inf
box_loss_scale = 2 - y_true[l][...,2:3]*y_true[l][...,3:4]
# Find ignore mask, iterate over each of batch.
ignore_mask = tf.TensorArray(K.dtype(y_true[0]), size=1, dynamic_size=True)
object_mask_bool = K.cast(object_mask, 'bool')
def loop_body(b, ignore_mask):
true_box = tf.boolean_mask(y_true[l][b,...,0:4], object_mask_bool[b,...,0])
iou = box_iou(pred_box[b], true_box) #计算iou
best_iou = K.max(iou, axis=-1)
ignore_mask = ignore_mask.write(b, K.cast(best_iou<ignore_thresh, K.dtype(true_box)))
return b+1, ignore_mask
_, ignore_mask = K.control_flow_ops.while_loop(lambda b,*args: b<m, loop_body, [0, ignore_mask])
ignore_mask = ignore_mask.stack()
ignore_mask = K.expand_dims(ignore_mask, -1)
# K.binary_crossentropy is helpful to avoid exp overflow.
xy_loss = object_mask * box_loss_scale * K.binary_crossentropy(raw_true_xy, raw_pred[...,0:2], from_logits=True)
wh_loss = object_mask * box_loss_scale * 0.5 * K.square(raw_true_wh-raw_pred[...,2:4])
confidence_loss = object_mask * K.binary_crossentropy(object_mask, raw_pred[...,4:5], from_logits=True)+ \
(1-object_mask) * K.binary_crossentropy(object_mask, raw_pred[...,4:5], from_logits=True) * ignore_mask
class_loss = object_mask * K.binary_crossentropy(true_class_probs, raw_pred[...,5:], from_logits=True)
xy_loss = K.sum(xy_loss) / mf
wh_loss = K.sum(wh_loss) / mf
confidence_loss = K.sum(confidence_loss) / mf
class_loss = K.sum(class_loss) / mf
loss += xy_loss + wh_loss + confidence_loss + class_loss
if print_loss:
loss = tf.Print(loss, [loss, xy_loss, wh_loss, confidence_loss, class_loss, K.sum(ignore_mask)], message='loss: ')
return loss
Keras-YOLO3模型实现详解
本文详细介绍了Keras中的YOLOv3模型实现,重点解析了model.py文件中的核心函数,包括二维卷积层的设定、网络结构的设计以及边界框的处理和损失函数的计算,展示了YOLO模型在目标检测中的应用。

4792

被折叠的 条评论
为什么被折叠?



