目录
1.前言
传统LSTM模型虽能捕捉时序依赖,但存在超参数依赖经验设置、长序列关键信息挖掘不足的问题。基于粒子群优化的LSTM-Attention算法通过Attention机制强化关键时序特征的权重,再利用PSO全局优化模型超参数,显著提升了预测精度与鲁棒性。
2.算法运行效果图预览
(完整程序运行后无水印)



3.算法运行软件版本
Matlab2024b(推荐)或者matlab2022a
4.部分核心程序
(完整版代码包含中文注释和操作步骤视频)
........................................................
%% 迭代更新
ij = 0;
LOSSer = [];
VLOSSer = [];
for epoch = 1:Miter
epoch
[~,state] = func_params(Hnum,Isize,Osize); % 每轮epoch,state初始化
% batch 更新
for i = 1 : Epochs
ij = ij + 1;
idx = (i-1)*Bsize+1:i*Bsize;
dlX = gpuArray(Xtrain(:,idx,:));
dlY = gpuArray(Ttrain(idx));
[gradients,loss,state] = dlfeval(@func_Model,dlX,dlY,para,state);
%L2正则化
RL2 = 0.001;
[para,Gradm,SqGradm] = adamupdate(para,gradients,Gradm,SqGradm,ij,Lr);
% 验证集测试
if ij == 1 || mod(ij,Vfre) == 0
oYnorm = func_Predict(gpuArray(Xnorm),para,Vstate);
VLOSS = mse(oYnorm, gpuArray(Ynorm));
end
end
LOSSer = [LOSSer,loss];
VLOSSer = [VLOSSer,double(gather(extractdata(VLOSS)))];
% 每轮epoch 更新学习率
if mod(epoch,10) == 0
Lr = Lr * Lrdf;
end
end
figure
plot(LOSSer,'LineWidth',2);
hold on
plot(VLOSSer,'LineWidth',2);
xlabel("Iteration")
ylabel("Loss")
legend('训练集','验证集')
%预测
Ynpre = func_Predict(gpuArray(Xtest),para,Tstate);
Ynpre = extractdata(Ynpre);
%可视化
figure
plot(Ynpre,'b');
hold on
plot(Ttest,'r')
legend('预测值','实际值')
save R1.mat LOSSer VLOSSer Ynpre Ttest gb1 Hnum Lr Lrdf Lvl_sgrad
234
5.算法仿真参数
%寻找最佳参数
%群体个数
Npeop = 6;
%初始化群体维数
dims = 3;
%最迭代次数
Iter = 10;
%学习因子
c1 = 2;
c2 = 2;
%用线性递减因子粒子群算法
Wmax = 1; %惯性权重最大值
Wmin = 0.8; %惯性权重最小值
%每个变量的取值范围
tmps(1,:)= [0.001 0.01]; %Lr
tmps(2,:)= [0.0001 0.0003];%Lrdf
tmps(3,:)= [0.01 0.02]; %Lvl_sgrad
6.算法理论概述
该算法本质是“特征增强(Attention)+ 时序建模(LSTM)+ 参数优化(遗传算法) ”的三层架构,三者协同解决一维时间序列预测的核心痛点:
LSTM层:通过门控机制(输入门、遗忘门、输出门)处理时间序列的长期依赖,避免传统RNN 的梯度消失问题;
Attention层:为LSTM输出的不同时刻特征分配动态权重,突出对预测结果影响显著的关键时序片段(如电力负荷中的 “峰谷时段” 特征);
PSO优化:将LSTM-Attention的超参数(如学习率、隐藏层神经元数、Attention权重维度)编码为 “粒子”,通过粒子群优化迭代操作搜索全局最优超参数组合,替代人工调参的盲目性。
LSTM-Attention 的预测性能高度依赖超参数,如学习率η、LSTM隐藏层神经元数h、Attention 权重维度da、批大小B等。传统人工调参(如网格搜索)易陷入局部最优,遗传算法通过模拟生物进化过程,实现超参数的全局优化。
适应度函数是PSO算法的“评价标准”,需与模型预测目标一致(如最小化预测误差)。此处以 “LSTM-Attention在验证集Dval上的均方根误差(RMSE)的倒数” 作为适应度值,适应度越高,超参数组合越优。其中定义适应度函数为:

相比传统LSTM,该算法通过Attention机制强化关键时序特征,减少无关信息干扰;通过遗传算法全局优化超参数,避免人工调参的主观性,在长序列、高噪声的一维时间序列(如金融波动、设备振动信号)预测中表现更优。
7.参考文献
[1]汪敏,田大平.改进粒子群算法优化CNN-LSTM-Attention模型在安全生产事故预测中的应用[J].安全与环境学报, 2025(5).
[2]徐丸絮,沈吟东.基于Attention-LSTM神经网络的公交行程时间预测[J].现代电子技术, 2022(003):045.
8.算法完整程序工程
OOOOO
OOO
O
关注后输入自动回复码:0005
PSO优化LSTM-Attention时间序列预测

957

被折叠的 条评论
为什么被折叠?



