
深度学习
文章平均质量分 80
深度学习
简简单单做算法
从事人工智能,机器学习,机器视觉,图像处理,信号通信等工作,熟悉MATLAB/verilog/python/opencv/tensorflow/caffe/C/C++等编程语言
展开
-
基于GWO灰狼优化的XGBoost序列预测算法matlab仿真
序列预测在金融、气象、工业控制等领域具有广泛应用,其核心目标是通过历史数据推断未来趋势。传统的时间序列预测方法如 ARIMA、LSTM 等在处理非线性、高维数据时存在局限性。XGBoost(Extreme Gradient Boosting)作为一种高效的梯度提升框架,在结构化数据预测中表现优异,但其性能高度依赖超参数的选择。GWO具有较强的全局搜索能力,能够在复杂搜索空间中快速找到全局最优解。将GWO与XGBoost结合,可自动优化模型超参数,提升序列预测精度。原创 2025-04-05 02:04:14 · 396 阅读 · 0 评论 -
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
序列预测在金融、气象、工业控制等领域具有广泛应用,其核心目标是通过历史数据推断未来趋势。传统的时间序列预测方法如 ARIMA、LSTM 等在处理非线性、高维数据时存在局限性。XGBoost(Extreme Gradient Boosting)作为一种高效的梯度提升框架,在结构化数据预测中表现优异,但其性能高度依赖超参数的选择。WOA具有较强的全局搜索能力,能够在复杂搜索空间中快速找到全局最优解。将WOA与XGBoost结合,可自动优化模型超参数,提升序列预测精度。原创 2025-03-26 04:12:01 · 343 阅读 · 0 评论 -
基于PSO粒子群优化的XGBoost时间序列预测算法matlab仿真
序列预测在金融、气象、工业控制等领域具有广泛应用,其核心目标是通过历史数据推断未来趋势。传统的时间序列预测方法如 ARIMA、LSTM 等在处理非线性、高维数据时存在局限性。XGBoost(Extreme Gradient Boosting)作为一种高效的梯度提升框架,在结构化数据预测中表现优异,但其性能高度依赖超参数的选择。粒子群优化(Particle Swarm Optimization, PSO)是一种基于群体智能的随机优化算法,能够在复杂搜索空间中快速找到全局最优解。原创 2025-03-16 00:02:06 · 493 阅读 · 0 评论 -
基于GoogleNet深度学习网络和GEI步态能量提取的步态识别算法matlab仿真,数据库采用CASIA库
步态识别作为生物特征识别领域的重要研究方向,具有非接触、远距离识别等优势,在智能安防、身份验证等诸多领域展现出巨大的应用潜力。CASI库是步态识别研究中常用的大型数据库,为算法的训练和评估提供了丰富的数据资源。GoogleNet深度学习网络凭借其独特的 Inception 模块和高效的网络结构,在图像分类等任务中取得了优异的成绩。GEI(Gait Energy Image)步态能量图则是一种能够有效表征步态特征的方法,通过对多帧步态图像的能量信息进行整合,突出了步态的关键特征。原创 2025-03-13 21:41:26 · 1108 阅读 · 0 评论 -
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
在GWO算法中,灰狼被分为四类:α(领头狼)、β(第二领导者)、δ(第三领导者)以及普通狼(Ω)。在每次迭代中,这些角色对应于当前种群中适应度最好的三个解以及其余的解。通过模拟这些狼在捕食过程中的协作与竞争,算法逐步向全局最优解靠近.1.数据预处理:对时间序列数据进行归一化处理,使其取值范围在([0,1])之间。2.初始化种群:随机生成一组种群,每个个体代表一组网络参数。原创 2025-02-24 22:56:05 · 364 阅读 · 0 评论 -
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
在序列预测问题中,如气象数据预测、交通流量预测等,准确捕捉序列中的长期依赖关系和上下文信息是关键。双向长短期记忆网络(BiLSTM)能有效处理长序列数据,同时考虑序列的过去和未来信息,但BiLSTM的性能受其参数设置的影响较大。粒子群优化算法(PSO)是一种基于群体智能的优化算法,具有全局搜索能力强、收敛速度快等优点。将PSO应用于BiLSTM的参数优化,可以提高BiLSTM的序列预测性能。原创 2025-02-23 21:15:38 · 460 阅读 · 0 评论 -
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
LSTM是一种特殊的循环神经网络(RNN),旨在解决传统 RNN 在处理长序列时的梯度消失和梯度爆炸问题,从而更好地捕捉长序列中的长期依赖关系。其核心结构包含输入门、遗忘门、输出门以及记忆单元。BiLSTM 是在 LSTM 基础上发展而来,它通过同时向前和向后处理序列,能够更好地捕捉序列中的前后文信息,从而在序列预测任务中表现更优。BiLSTM 由一个前向 LSTM 和一个后向 LSTM 组成。这种结构使得 BiLSTM 能够同时利用序列的前文和后文信息,在处理需要全局信息的序列预测任务时具有明显优势。原创 2025-02-23 21:07:23 · 490 阅读 · 0 评论 -
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
LSTM是一种特殊的循环神经网络(RNN),旨在解决传统 RNN 在处理长序列时的梯度消失和梯度爆炸问题,从而更好地捕捉长序列中的长期依赖关系。其核心结构包含输入门、遗忘门、输出门以及记忆单元。BiLSTM 是在 LSTM 基础上发展而来,它通过同时向前和向后处理序列,能够更好地捕捉序列中的前后文信息,从而在序列预测任务中表现更优。BiLSTM 由一个前向 LSTM 和一个后向 LSTM 组成。这种结构使得 BiLSTM 能够同时利用序列的前文和后文信息,在处理需要全局信息的序列预测任务时具有明显优势。原创 2025-02-21 04:16:52 · 534 阅读 · 0 评论 -
基于WOA鲸鱼优化的TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
时间序列预测在众多领域如金融、气象、工业生产等有着广泛的应用。准确预测时间序列的未来趋势对于决策制定、资源分配、风险评估等方面具有重要意义。传统的时间序列预测方法如 ARIMA 等在处理复杂的非线性时间序列时存在一定的局限性。随着深度学习技术的发展,时间卷积神经网络(TCN)因其能够自动学习时间序列中的复杂模式和特征,在时间序列预测中表现出良好的性能。然而,TCN 的性能高度依赖于其超参数的设置,如卷积核大小、层数、扩张率等。WOA则可以用于优化 TCN 的参数,以提高预测性能。原创 2025-02-14 22:11:08 · 313 阅读 · 0 评论 -
基于WOA鲸鱼优化的TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
时间序列预测在众多领域如金融、气象、工业生产等有着广泛的应用。准确预测时间序列的未来趋势对于决策制定、资源分配、风险评估等方面具有重要意义。传统的时间序列预测方法如 ARIMA 等在处理复杂的非线性时间序列时存在一定的局限性。随着深度学习技术的发展,时间卷积神经网络(TCN)因其能够自动学习时间序列中的复杂模式和特征,在时间序列预测中表现出良好的性能。然而,TCN 的性能高度依赖于其超参数的设置,如卷积核大小、层数、扩张率等。PSO(粒子群优化)则可以用于优化 TCN 的参数,以提高预测性能。原创 2025-02-09 16:16:29 · 931 阅读 · 0 评论 -
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
TCN 是一种专门为处理时间序列数据设计的卷积神经网络。它以卷积层为核心组件,通过扩张卷积(Dilated Convolution)来增加感受野,从而捕捉时间序列中的长距离依赖关系。与传统的循环神经网络(如 RNN、LSTM)不同,TCN 的卷积操作可以并行计算,大大提高了训练效率。在 TCN 中,输入的时间序列数据依次经过多个卷积层、批归一化层(Batch Normalization)和激活函数层(如 ReLU)进行特征提取和转换。这些层的组合能够自动学习时间序列中的复杂模式和趋势。原创 2025-02-07 03:03:44 · 626 阅读 · 0 评论 -
基于PSO粒子群优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
时间序列预测在众多领域如金融、气象、工业生产等有着广泛的应用。准确预测时间序列的未来趋势对于决策制定、资源分配、风险评估等方面具有重要意义。传统的时间序列预测方法如 ARIMA 等在处理复杂的非线性时间序列时存在一定的局限性。随着深度学习技术的发展,时间卷积神经网络(TCN)因其能够自动学习时间序列中的复杂模式和特征,在时间序列预测中表现出良好的性能。然而,TCN 的性能高度依赖于其超参数的设置,如卷积核大小、层数、扩张率等。PSO(粒子群优化)则可以用于优化 TCN 的参数,以提高预测性能。原创 2025-01-22 19:08:12 · 620 阅读 · 0 评论 -
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
时间序列预测在众多领域如金融、气象、工业生产等有着广泛的应用。准确预测时间序列的未来趋势对于决策制定、资源分配、风险评估等方面具有重要意义。传统的时间序列预测方法如ARIMA等在处理复杂的非线性时间序列时存在一定的局限性。随着深度学习技术的发展,时间卷积神经网络(TCN)因其能够自动学习时间序列中的复杂模式和特征,在时间序列预测中表现出良好的性能。然而,TCN的性能高度依赖于其超参数的设置,如卷积核大小、层数、扩张率等。PSO(粒子群优化)则可以用于优化TCN的参数,以提高预测性能。原创 2025-01-20 03:50:04 · 956 阅读 · 0 评论 -
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
时间序列预测是根据历史时间序列数据来预测未来值的过程。在众多的预测方法中,TCN(时间卷积神经网络)由于其对序列数据的有效处理能力而被广泛应用,PSO(粒子群优化)则可以用于优化 TCN 的参数,以提高预测性能。TCN 主要由一系列的因果卷积层(Causal Convolution Layer)和残差连接(Residual Connection)组成。经过多层卷积和处理后,TCN 的输出层将生成预测结果。对于时间序列预测任务,输出层的维度通常与预测的时间步长相对应。因果卷积残差连接适应度函数。原创 2025-01-16 23:20:22 · 579 阅读 · 0 评论 -
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
时间序列预测在众多领域如金融、气象、工业生产等有着广泛的应用。准确预测时间序列的未来趋势对于决策制定、资源分配、风险评估等方面具有重要意义。传统的时间序列预测方法如 ARIMA 等在处理复杂的非线性时间序列时存在一定的局限性。随着深度学习技术的发展,时间卷积神经网络(TCN)因其能够自动学习时间序列中的复杂模式和特征,在时间序列预测中表现出良好的性能。然而,TCN 的性能高度依赖于其超参数的设置,如卷积核大小、层数、扩张率等。原创 2025-01-02 21:56:28 · 447 阅读 · 0 评论 -
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
时间序列预测在众多领域如金融、气象、工业生产等有着广泛的应用。准确预测时间序列的未来趋势对于决策制定、资源分配、风险评估等方面具有重要意义。传统的时间序列预测方法如 ARIMA 等在处理复杂的非线性时间序列时存在一定的局限性。随着深度学习技术的发展,时间卷积神经网络(TCN)因其能够自动学习时间序列中的复杂模式和特征,在时间序列预测中表现出良好的性能。然而,TCN 的性能高度依赖于其超参数的设置,如卷积核大小、层数、扩张率等。原创 2024-12-30 05:24:54 · 894 阅读 · 0 评论 -
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
时间序列预测在众多领域如金融、气象、工业生产等有着广泛的应用。准确预测时间序列的未来趋势对于决策制定、资源分配、风险评估等方面具有重要意义。传统的时间序列预测方法如 ARIMA 等在处理复杂的非线性时间序列时存在一定的局限性。随着深度学习技术的发展,时间卷积神经网络(TCN)因其能够自动学习时间序列中的复杂模式和特征,在时间序列预测中表现出良好的性能。然而,TCN 的性能高度依赖于其超参数的设置,如卷积核大小、层数、扩张率等。原创 2024-12-27 14:05:46 · 632 阅读 · 0 评论 -
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
时间序列预测在众多领域中都具有重要的应用价值。传统的时间序列预测方法在处理复杂的非线性时间序列数据时往往表现出一定的局限性。近年来,深度学习技术的发展为时间序列预测提供了新的思路和方法。网络结构CNN-LSTM-SAM 网络由卷积层、LSTM 层、自注意力机制层和全连接层组成。卷积层用于提取时间序列数据的局部特征;LSTM层用于处理时间序列数据中的长期依赖关系;自注意力机制层用于捕捉时间序列数据中的全局特征;全连接层将提取到的特征进行整合,输出预测结果。算法流程。原创 2024-12-22 17:35:35 · 460 阅读 · 0 评论 -
基于yolov2和googlenet网络的疲劳驾驶检测算法matlab仿真
疲劳检测的原理是根据人体疲劳状态下的特征检测,和正常状态下的特征检测做对比。在做疲劳检测之前,首先需要分析人体在疲劳状态下与正常状态下的特征有哪些不同的的表现,这些不同的表现可以通过哪些数值具体的量化出来,然后通过这些量化后的不同数值来判断属于哪种行为;最后根据获取的各种行为综合判断属于疲劳状态或者正常状态。基于深度学习网络的疲劳驾驶检测算法是一种利用深度学习技术对驾驶员的疲劳状态进行自动检测的方法。基于深度学习网络的疲劳驾驶检测算法主要利用了深度学习模型强大的特征提取和分类能力。原创 2024-12-18 01:47:44 · 785 阅读 · 0 评论 -
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
人脸识别技术在安防、金融、交通等众多领域有着广泛的应用。然而,传统的人脸识别方法容易受到照片、视频等非活体攻击的影响。为了提高人脸识别系统的安全性,活体人脸识别检测技术应运而生。MobileNet 作为一种高效的深度学习网络,在移动设备和资源受限环境下的计算机视觉任务中表现出色,其应用于活体人脸识别检测能够在保证准确性的同时,提高检测效率。活体人脸具有丰富的纹理细节,如皮肤的微小褶皱、毛发等,并且在不同光照条件下会有自然的光影变化。而非活体(如照片或视频)的纹理相对单一,光照效果可能比较固定。原创 2024-12-12 15:01:49 · 527 阅读 · 0 评论 -
基于GWO灰狼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
时间序列预测在众多领域中都具有重要的应用价值,如金融市场预测、气象预报、交通流量预测等。传统的时间序列预测方法在处理复杂的非线性时间序列数据时往往表现出一定的局限性。近年来,深度学习技术的发展为时间序列预测提供了新的思路和方法。网络结构 CNN-LSTM-SAM 网络由卷积层、LSTM层、自注意力机制层和全连接层组成。卷积层用于提取时间序列数据的局部特征;LSTM层用于处理时间序列数据中的长期依赖关系;自注意力机制层用于捕捉时间序列数据中的全局特征;全连接层将提取到的特征进行整合,输出预测结果。原创 2024-12-12 14:54:56 · 887 阅读 · 0 评论 -
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
在现代无线通信系统中,信号调制类型的识别对于频谱监测、信号解调、干扰识别等任务具有至关重要的意义。MQAM 作为一种广泛应用的高效调制方式,能够在有限的带宽内传输更多的信息。随着深度学习技术的飞速发展,其在信号处理领域的应用日益广泛。MobileNet 深度学习网络以其轻量化、高效性的特点,特别适合于资源受限环境下的信号识别任务。基于 MobileNet 网络实现 MQAM 调制类型识别,能够在保证较高识别准确率的同时,降低计算复杂度和资源消耗,为无线通信系统的智能化发展提供有力支持。原创 2024-12-04 03:44:49 · 735 阅读 · 0 评论 -
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
时间序列预测在众多领域中都具有重要的应用价值,如金融市场预测、气象预报、交通流量预测等。传统的时间序列预测方法在处理复杂的非线性时间序列数据时往往表现出一定的局限性。近年来,深度学习技术的发展为时间序列预测提供了新的思路和方法。网络结构CNN-LSTM-SAM 网络由卷积层、LSTM 层、自注意力机制层和全连接层组成。卷积层用于提取时间序列数据的局部特征;LSTM 层用于处理时间序列数据中的长期依赖关系;自注意力机制层用于捕捉时间序列数据中的全局特征;全连接层将提取到的特征进行整合,输出预测结果。原创 2024-12-04 03:20:29 · 543 阅读 · 0 评论 -
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
时间序列预测在众多领域中都具有重要的应用价值,如金融市场预测、气象预报、交通流量预测等。传统的时间序列预测方法在处理复杂的非线性时间序列数据时往往表现出一定的局限性。近年来,深度学习技术的发展为时间序列预测提供了新的思路和方法。网络结构CNN-lstm-SAM 网络由卷积层、lstm层、自注意力机制层和全连接层组成。卷积层用于提取时间序列数据的局部特征;lstm层用于处理时间序列数据中的长期依赖关系;自注意力机制层用于捕捉时间序列数据中的全局特征;全连接层将提取到的特征进行整合,输出预测结果。原创 2024-11-23 14:02:34 · 270 阅读 · 0 评论 -
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
时间序列预测在众多领域中都具有重要的应用价值,如金融市场预测、气象预报、交通流量预测等。传统的时间序列预测方法在处理复杂的非线性时间序列数据时往往表现出一定的局限性。近年来,深度学习技术的发展为时间序列预测提供了新的思路和方法。网络结构CNN-GRU-SAM 网络由卷积层、GRU 层、自注意力机制层和全连接层组成。卷积层用于提取时间序列数据的局部特征;GRU 层用于处理时间序列数据中的长期依赖关系;自注意力机制层用于捕捉时间序列数据中的全局特征;全连接层将提取到的特征进行整合,输出预测结果。算法流程。原创 2024-11-14 06:23:16 · 312 阅读 · 0 评论 -
基于深度学习的路面裂缝检测算法matlab仿真
随着基础设施建设的不断发展,道路的安全和维护变得至关重要。路面裂缝是道路损坏的常见形式之一,如果不及时检测和修复,可能会导致更严重的道路损坏,甚至危及行车安全。传统的路面裂缝检测方法主要依赖人工巡检,效率低下且准确性难以保证。近年来,深度学习技术的发展为路面裂缝检测提供了新的解决方案。其中,基于 YOLOv2(You Only Look Once version 2)的路面裂缝检测算法以其高效、准确的特点受到了广泛关注。原创 2024-11-10 18:27:04 · 895 阅读 · 0 评论 -
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
时间序列预测在众多领域中都具有重要的应用价值,如金融市场预测、气象预报、交通流量预测等。传统的时间序列预测方法在处理复杂的非线性时间序列数据时往往表现出一定的局限性。近年来,深度学习技术的发展为时间序列预测提供了新的思路和方法。网络结构CNN-GRU-SAM 网络由卷积层、GRU 层、自注意力机制层和全连接层组成。卷积层用于提取时间序列数据的局部特征;GRU 层用于处理时间序列数据中的长期依赖关系;自注意力机制层用于捕捉时间序列数据中的全局特征;全连接层将提取到的特征进行整合,输出预测结果。算法流程。原创 2024-11-02 22:13:59 · 924 阅读 · 0 评论 -
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
时间序列预测在众多领域中都具有重要的应用价值,如金融市场预测、气象预报、交通流量预测等。传统的时间序列预测方法在处理复杂的非线性时间序列数据时往往表现出一定的局限性。近年来,深度学习技术的发展为时间序列预测提供了新的思路和方法。网络结构CNN-GRU-SAM 网络由卷积层、GRU 层、自注意力机制层和全连接层组成。卷积层用于提取时间序列数据的局部特征;GRU 层用于处理时间序列数据中的长期依赖关系;自注意力机制层用于捕捉时间序列数据中的全局特征;全连接层将提取到的特征进行整合,输出预测结果。算法流程。原创 2024-10-25 02:12:01 · 592 阅读 · 0 评论 -
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
时间序列预测在众多领域中都具有重要的应用价值,如金融市场预测、气象预报、交通流量预测等。传统的时间序列预测方法在处理复杂的非线性时间序列数据时往往表现出一定的局限性。近年来,深度学习技术的发展为时间序列预测提供了新的思路和方法。网络结构CNN-GRU-SAM 网络由卷积层、GRU 层、自注意力机制层和全连接层组成。卷积层用于提取时间序列数据的局部特征;GRU 层用于处理时间序列数据中的长期依赖关系;自注意力机制层用于捕捉时间序列数据中的全局特征;全连接层将提取到的特征进行整合,输出预测结果。算法流程。原创 2024-10-20 03:15:24 · 789 阅读 · 0 评论 -
基于GoogleNet深度学习网络的手语识别算法matlab仿真
基于GoogleNet深度学习网络的手语识别算法,是一种利用卷积神经网络(Convolutional Neural Networks, CNN)来识别手语手势的方法。GoogleNet,也被称为Inception v1,是2014年在ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 上取得优异成绩的一种CNN架构。它引入了Inception模块,这是一种设计用来增加网络的宽度同时保持计算效率的设计。原创 2024-10-11 22:07:37 · 699 阅读 · 0 评论 -
基于深度学习网络的宝石类型识别算法matlab仿真
宝石作为一种珍贵的矿物资源,具有很高的经济价值和艺术价值。传统的宝石类型识别方法主要依靠人工经验和专业设备,存在效率低、成本高、主观性强等问题。随着深度学习技术的发展,基于深度学习网络的宝石类型识别算法逐渐成为研究热点。GoogLeNet 是一种深度卷积神经网络,在图像分类等任务中取得了显著的效果。原创 2024-10-08 14:12:54 · 956 阅读 · 0 评论 -
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
贝叶斯优化是一种全局优化方法,特别适用于黑盒函数优化问题,即目标函数的形式未知或者很难计算梯度的情况。贝叶斯优化通过构建一个代理模型(如高斯过程)来近似目标函数,并利用该代理模型来指导搜索过程。4.1卷积神经网络(CNN)在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。原创 2024-09-25 06:25:48 · 644 阅读 · 0 评论 -
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
贝叶斯优化是一种全局优化方法,特别适用于黑盒函数优化问题,即目标函数的形式未知或者很难计算梯度的情况。贝叶斯优化通过构建一个代理模型(如高斯过程)来近似目标函数,并利用该代理模型来指导搜索过程。原创 2024-08-31 02:41:25 · 1059 阅读 · 0 评论 -
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
贝叶斯优化是一种全局优化方法,特别适用于黑盒函数优化问题,即目标函数的形式未知或者很难计算梯度的情况。贝叶斯优化通过构建一个代理模型(如高斯过程)来近似目标函数,并利用该代理模型来指导搜索过程。贝叶斯优化卷积神经网络(Bayes-CNN)通过结合贝叶斯优化和CNN的优点来提高模型的性能。具体来说,贝叶斯优化可以用来优化CNN中的超参数,如学习率等。基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法通过结合贝叶斯优化和CNN的优点,能够有效地处理复杂的数据分类任务。原创 2024-08-23 03:27:47 · 593 阅读 · 1 评论 -
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,分组卷积神经网络在时间序列预测中展现出显著优势。然而,模型参数的有效设置对预测性能至关重要。灰狼优化(GWO)作为一种高效的全局优化算法,被引入用于优化分组卷积神经网络的超参数。原创 2024-08-16 19:15:09 · 734 阅读 · 0 评论 -
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
基于woa优化的GroupCNN分组卷积网络时间序列预测算法是一种结合了粒子群优化技术和分组卷积神经网络(GroupCNN)的时间序列预测方法。这种方法利用粒子群优化来寻找最优的网络结构和超参数,以提高时间序列预测的准确性和效率。原创 2024-08-13 02:33:33 · 617 阅读 · 0 评论 -
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
基于遗传算法(Genetic Algorithm, GA)优化的GroupCNN分组卷积网络时间序列预测算法是一种结合了粒子群优化技术和分组卷积神经网络(GroupCNN)的时间序列预测方法。这种方法利用粒子群优化来寻找最优的网络结构和超参数,以提高时间序列预测的准确性和效率。原创 2024-08-02 20:52:18 · 444 阅读 · 0 评论 -
基于NSCT非采样轮廓波变换和CNN网络人脸识别matlab仿真
基于非采样轮廓波变换(Nonsubsampled Contourlet Transform, NSCT)和卷积神经网络(Convolutional Neural Network, CNN)的人脸识别系统是一种结合了传统信号处理方法和深度学习技术的先进方法。这种方法通过NSCT提取图像的多尺度、多方向特征,并利用CNN的强大特征学习能力和分类能力来实现高效的人脸识别。NSCT是一种多尺度、多方向的图像分解方法,它结合了多分辨率分析和方向滤波器组的优点,可以有效地捕获图像中的纹理和边缘信息。多尺度分析。原创 2024-07-25 01:25:51 · 535 阅读 · 0 评论 -
基于深度学习网络的USB摄像头实时视频采集与水果识别matlab仿真
GoogleNet(也称为Inception-v1)是一种深度卷积神经网络(CNN),它通过使用Inception模块来减少参数量,同时保持网络的深度和宽度。Inception模块的设计旨在捕捉不同尺度的特征,并通过并行的卷积层和池化层来实现这一点。USB摄像头采集图像的过程可以通过读取摄像头帧并将其转换为可用于深度学习网络的格式来实现。假设摄像头采集的图像为I.原创 2024-07-25 01:13:51 · 422 阅读 · 0 评论 -
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
基于粒子群优化(Particle Swarm Optimization, PSO)的GroupCNN分组卷积网络时间序列预测算法是一种结合了粒子群优化技术和分组卷积神经网络(GroupCNN)的时间序列预测方法。这种方法利用粒子群优化来寻找最优的网络结构和超参数,以提高时间序列预测的准确性和效率。原创 2024-07-25 00:58:39 · 520 阅读 · 0 评论