Description
h0=2,h1=3,h2=6,hn=4hn−1+17hn−2−12hn−3−16h0=2,h1=3,h2=6,hn=4hn−1+17hn−2−12hn−3−16
bn=3hn+1hn+9hn+1hn−1+9h2n+27hnhn−1−18hn+1−126hn−81hn−1+192,n>0bn=3hn+1hn+9hn+1hn−1+9hn2+27hnhn−1−18hn+1−126hn−81hn−1+192,n>0
an=bn+4n,n>0an=bn+4n,n>0
求⌊an−−√⌋,n>1⌊an⌋,n>1
Input
第一行一整数TT表示用例组数,每组用例输入一整数(1≤T≤1000,1<n≤1015)(1≤T≤1000,1<n≤1015)
Output
求⌊an−−√⌋⌊an⌋,结果模109+7109+7
Sample Input
3
4
7
9
Sample Output
1255
Solution
先给出一个结论,若fn=afn−1+bfn−2fn=afn−1+bfn−2,则f2n+1−afn+1fn−bf2n=−b(f2n−afnfn−1−bf2n−1)=(−b)n(f21−af1f0−bf20)fn+12−afn+1fn−bfn2=−b(fn2−afnfn−1−bfn−12)=(−b)n(f12−af1f0−bf02)
直接将fn+1=afn+bfn−1fn+1=afn+bfn−1代入即可证明
考虑化简bnbn,有bn=3(hn+1+3hn−8)(hn+3hn−1−8)+6hn+1−30hn−9hn−1bn=3(hn+1+3hn−8)(hn+3hn−1−8)+6hn+1−30hn−9hn−1
令fn=hn+3hn−1−8fn=hn+3hn−1−8,配凑hn=4hn−1+17hn−2−12hn−3−16hn=4hn−1+17hn−2−12hn−3−16得fn=7fn−1−4fn−2fn=7fn−1−4fn−2
由h0=2,h1=3,h2=6h0=2,h1=3,h2=6得f1=1,f2=7f1=1,f2=7,定义f0=0f0=0则同样的有f2=7f1−4f0f2=7f1−4f0,故由上面的结论可知f2n+1−7fn+1fn+4f2n=4nfn+12−7fn+1fn+4fn2=4n
进而an=3fn+1fn+4n+6hn+1−30hn−9hn−1=(fn+1−2fn)2+6hn+1−30hn−9hn−1an=3fn+1fn+4n+6hn+1−30hn−9hn−1=(fn+1−2fn)2+6hn+1−30hn−9hn−1
不断展开hn+1hn+1可以证明0<6hn+1−30hn−9hn−1<2fn+1−4fn+1,n>10<6hn+1−30hn−9hn−1<2fn+1−4fn+1,n>1,故有(fn+1−2fn)2<an<(fn+1−2fn+1)2(fn+1−2fn)2<an<(fn+1−2fn+1)2,进而有⌊an−−√⌋=fn+1−2fn=7⌊an−1−−−−√⌋−4⌊an−2−−−−√⌋⌊an⌋=fn+1−2fn=7⌊an−1⌋−4⌊an−2⌋,矩阵快速幂即可
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
typedef long long ll;
using namespace std;
const int INF=0x3f3f3f3f,maxn=5;
const ll mod=1000000007;
struct Mat
{
ll mat[maxn][maxn];//矩阵
int row,col;//矩阵行列数
};
Mat mod_mul(Mat a,Mat b,int p)//矩阵乘法
{
Mat ans;
ans.row=a.row;
ans.col=b.col;
memset(ans.mat,0,sizeof(ans.mat));
for(int i=0;i<ans.row;i++)
for(int k=0;k<a.col;k++)
if(a.mat[i][k])
for(int j=0;j<ans.col;j++)
{
ans.mat[i][j]+=a.mat[i][k]*b.mat[k][j]%mod;
ans.mat[i][j]%=p;
}
return ans;
}
Mat mod_pow(Mat a,ll k,int p)//矩阵快速幂
{
Mat ans;
ans.row=a.row;
ans.col=a.col;
for(int i=0;i<a.row;i++)
for(int j=0;j<a.col;j++)
ans.mat[i][j]=(i==j);
while(k)
{
if(k&1)ans=mod_mul(ans,a,p);
a=mod_mul(a,a,p);
k>>=1;
}
return ans;
}
Mat A,B;
int main()
{
A.col=A.row=2;
A.mat[0][0]=7,A.mat[0][1]=mod-4,A.mat[1][0]=1,A.mat[1][1]=0;
int T;
ll n;
scanf("%d",&T);
while(T--)
{
scanf("%I64d",&n);
if(n==2)printf("31\n");
else if(n==3)printf("197\n");
else
{
B=mod_pow(A,n-3,mod);
ll ans=197ll*B.mat[0][0]%mod+31ll*B.mat[0][1]%mod;
ans=(ans%mod+mod)%mod;
printf("%I64d\n",ans);
}
}
}