牛客练习赛47

文章目录

C-DongDong跳一跳

https://ac.nowcoder.com/acm/contest/904/C
题意:给n个数,每个数有 杆的高度 和 权值 两种属性,要求从第一个杆上跳,只能从左往右,并且高度差小于等于M,求能获得的最大的权值

有想过dp,dp[x]表示高度为x的时候所获得的最大的权值,就跟背包问题差不多,但是直接这样dp是没有顺序的,而且遍历一次高度,在遍历一次物品,复杂度也过不去啊

题解:所以就是处理第i个物品的时候,使用前i-1更新的dp来维护出当前的这个高度的最大值,然后这个最大值又用来更新出前i个物品弄出的dp

#include"bits/stdc++.h"
using namespace std;
typedef long long LL;
const int maxn=1e6+5;
LL a[maxn],h[maxn];
LL dp[maxn];//dp[x]表示高度为x时能获得的最大值 
int main()
{
	int N,M;
	while(cin>>N>>M)
	{
		LL maxH=0,res=0;
		for(int i=1;i<=N;i++)
		{
			scanf("%lld%lld",h+i,a+i);
			maxH=max(maxH,h[i]);
		}
		for(int i=1;i<=N;i++)
		{
			LL tp=a[i];
			for(int x=max(1LL,h[i]-M);x<=min(maxH,h[i]+M);x++)//高度的绝对值小于等于M 
			{
				tp=max(tp,dp[x]+a[i]);//用前i-1个物品更新出的dp来维护出当前高度的最大值 
			}
			dp[h[i]]=max(dp[h[i]],tp);//dp更新到第i个 
			res=max(res,tp);
		}
		cout<<res<<endl;
	}
}

考虑可再生能源出力不确定性的商业园区用户需求响应策略(Matlab代码实现)内容概要:本文围绕“考虑可再生能源出力不确定性的商业园区用户需求响应策略”展开,结合Matlab代码实现,研究在可再生能源(如风电、光伏)出力具有不确定性的背景下,商业园区如何制定有效的需求响应策略以优化能源调度和提升系统经济性。文中可能涉及不确定性建模(如场景生成与缩减)、优化模型构建(如随机规划、鲁棒优化)以及需求响应机制设计(如价格型、激励型),并通过Matlab仿真验证所提策略的有效性。此外,文档还列举了大量相关的电力系统、综合能源系统优化调度案例与代码资源,涵盖微电网调度、储能配置、负荷预测等多个方向,形成一个完整的科研支持体系。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源系统规划与运行的工程技术人员。; 使用场景及目标:①学习如何建模可再生能源的不确定性并应用于需求响应优化;②掌握使用Matlab进行商业园区能源系统仿真与优化调度的方法;③复现论文结果或开展相关课题研究,提升科研效率与创新能力。; 阅读建议:建议结合文中提供的Matlab代码实例,逐步理解模型构建与求解过程,重点关注不确定性处理方法与需求响应机制的设计逻辑,同时可参考文档中列出的其他资源进行扩展学习与交叉验证。
牛客练习赛142是一场编程竞赛,通常包含多个算法题目,涵盖如数组、字符串、链表、动态规划等常见数据结构与算法知识点。针对这类比赛的解题思路和方法,可以从以下几个方面进行分析: ### 题目类型与解题策略 1. **数组相关问题** - 常见的题目包括查找数组中出现次数超过一半的数字、寻找缺失的数字、求解最大子数组和等。 - 解题方法包括使用哈希表统计频率、摩尔投票法(适用于多数元素问题)、双指针技巧或前缀和优化。 2. **链表操作** - 链表题目可能涉及反转链表、判断链表是否有环、找出两个链表的相交节点等。 - 例如,在找两个链表相交点的问题中,可以先计算各自长度,然后让长链表先走差值步数,再同步遍历比较节点地址[^3]。 3. **字符串处理** - 包括最长回文子串、无重复字符的最长子串等。 - 可采用滑动窗口、动态规划或中心扩展法等策略。 4. **树与图** - 树相关的题目可能涉及二叉树的遍历、路径和、最近公共祖先等问题。 - 图论问题可能需要使用深度优先搜索(DFS)、广度优先搜索(BFS)或拓扑排序等算法。 5. **动态规划** - 动态规划常用于解决背包问题、最长递增子序列、编辑距离等。 - 关键在于定义状态转移方程,并通过迭代或记忆化搜索进行求解。 6. **贪心算法** - 适用于区间调度、活动选择、硬币找零等问题。 - 贪心策略的核心在于每一步都做出局部最优选择。 ### 示例代码:摩尔投票法解决“多数元素”问题 ```python def majorityElement(nums): count = 0 candidate = None for num in nums: if count == 0: candidate = num count += (1 if num == candidate else -1) return candidate ``` 该算法时间复杂度为 O(n),空间复杂度为 O(1),非常适合处理大规模输入的数据集[^2]。 ### 提升解题能力的建议 - **刷题积累经验**:在 LeetCode、Codeforces、AtCoder 等平台上持续练习,熟悉各种题型。 - **学习经典算法**:掌握常见的算法模板,如二分查找、归并排序、快速选择等。 - **阅读官方题解与讨论区**:了解不同解法的优劣,尤其是最优解的时间复杂度分析。 - **模拟比赛训练**:定期参加在线编程比赛,提升实战能力和代码调试速度。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值