题意
给出NNN个栅栏,它们都有一个长度,求出用这些栅栏围成的最大矩阵面积(不需全部用完)。
思路
搜索栅栏组成的长的总和aaa与宽的总和bbb,判断一下长a2\frac{a}{2}2a和宽b2\frac{b}{2}2b是否能在当前用了的栅栏中拼起来。
用状态压缩表示出当前选的栅栏,背包计算一下当前的状态能选出出的长度。
代码
#include<cstdio>
#include<algorithm>
#include<cstring>
const int N = 17, MAXS = 65536, MAXW = 241;
int l[N], f[MAXS], p[MAXS];
int n, ans;
void dfs(int dep, int a, int b, int s1, int s2) {
if (dep == n) {
if (p[s1] && p[s2])
ans = std::max(ans, a * b / 4);
return;
}
dfs(dep + 1, a + l[dep + 1], b, s1 | (1 << dep), s2);
dfs(dep + 1, a, b + l[dep + 1], s1, s2 | (1 << dep));
dfs(dep + 1, a, b, s1, s2);
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf("%d", &l[i]);
int m = (1 << n), t;
for (int s = 0; s < m; s++) {
t = 0;
for (int i = 1; i <= n; i++)
if ((s >> i - 1) & 1) t += l[i];
if (t & 1) continue;
memset(f, 0, sizeof(f));
f[0] = 1;
for (int i = 1; i <= n; i++)
if ((s >> i - 1) & 1)
for (int j = t / 2; j >= l[i]; j--)
f[j] |= f[j - l[i]];
p[s] = f[t / 2];
}
dfs(0, 0, 0, 0, 0);
ans ? printf("%d", ans) : printf("No Solution");
}