题意
给出 N N N个物体,每个物体有一个 C i C_i Ci,每次选择压缩第 i i i个物体到第 j j j个物体的代价是 x = j − i + ∑ k = i j C k x=j-i+\sum^{j}_{k=i}C_k x=j−i+∑k=ijCk,还要加上 ( x − l ) 2 (x-l)^2 (x−l)2,求出一种压缩方法求出最小的代价。
思路
代码
#include<cstdio>
int n, l;
long long s[50001], q[50001], f[50001];
long long x(int i) {
return s[i] + l;
}
long long y(int i) {
return f[i] + (s[i] + l) * (s[i] + l);
}
int main() {
scanf("%d %d", &n, &l);
l++;
for (int i = 1; i <= n; i++) {
scanf("%d", &s[i]);
s[i] += s[i - 1];
}
for (int i = 1; i <= n; i++)
s[i] += i;
q[1] = 0;
int head = 1, tail = 1;
for (int i = 1; i <= n; i++) {
while (head < tail && y(q[head + 1]) - y(q[head]) <= 2 * s[i] * (x(q[head + 1]) - x(q[head]))) head++;
f[i] = f[q[head]] + (s[i] - s[q[head]] - l) * (s[i] - s[q[head]] - l);
while (head < tail && (y(i) - y(q[tail])) * (x(q[tail]) - x(q[tail - 1])) <= (y(q[tail]) - y(q[tail - 1])) * (x(i) - x(q[tail]))) tail--;
q[++tail] = i;
}
printf("%lld", f[n]);
}

本文探讨了一种针对多个物体的最优压缩策略,旨在通过特定公式计算每次压缩的代价,并找到总代价最小的压缩方法。算法利用了动态规划思想,通过预处理物体累积成本和额外线性成本,结合双端队列优化状态转移过程,实现了高效求解。
334

被折叠的 条评论
为什么被折叠?



