Φ∈T3(Rm)Φ(u,v,w)∈RΦ(uigi,vjgj,wkgk)∈R(用Φ(uigi,vjgj,wkgk)表示也行)利用张量的性质:Φ(uigi,vjgj,wkgk)=Φ(gi,gj,gk)uivjwk其中uivjwk=(u,gi)(v,gk)(w,gk)=gi⊗gj⊗gk(u,v,w)Φ(gi,gj,gk)记为 ΦijkΦ=Φijk gi⊗gj⊗gk \Phi \in \mathcal T^3(R^m) \\ \Phi (u,v,w) \in R\\ \Phi(u^ig_i,v_jg^j,w^kg_k) \in R(用\Phi (u^ig_i,v^jg_j,w^kg_k)表示也行 )\\ 利用张量的性质:\\ \Phi (u^ig_i,v_jg^j,w^kg_k) =\Phi (g_i,g^j,g_k)u^iv_jw^k \\ 其中u^iv_jw^k =(u,g^i)(v,g_k)(w,g^k)=g^i\otimes g_j \otimes g^k (u,v,w) \\ \Phi (g_i,g^j,g_k) 记为\ {{\Phi_i}^j}_k \\ \Phi = {{\Phi_i}^j}_k \ g^i\otimes g_j \otimes g^k \\ Φ∈T3(Rm)Φ(u,v,w)∈RΦ(uigi,vjgj,wkgk)∈R(用Φ(uigi,vjgj,wkgk)表示也行)利用张量的性质:Φ(uigi,vjgj,wkgk)=Φ(gi,gj,gk)uivjwk其中uivjwk=(u,gi)(v,gk)(w,gk)=gi⊗gj⊗gk(u,v,w)Φ(gi,gj,gk)记为 ΦijkΦ=Φijk gi⊗gj⊗gk
指标升降:Φijk,i降,j升Φijk=Φ(gi,gj,gk)=Φ(gipgp,gjqgq,gk)=gipgjqΦ(gp,gq,gk)=gipgjqΦpqk 指标升降:{{\Phi^i}_j}^k,i降,j升\\ {{\Phi^i}_j}^k = \Phi(g^i,g_j,g^k) \\ = \Phi(g^{ip}g_p,g_{jq}g^q,g^k) \\ =g^{ip}g_{jq}\Phi(g_p,g^q,g^k) \\ =g^{ip}g_{jq}{{\Phi_p}^q}^k 指标升降:Φijk,i降,j升Φijk=Φ(gi,gj,gk)=Φ(gipgp,gjqgq,gk)=gipgjqΦ(gp,gq,gk)=gipgjqΦpqk
3阶张量有8中表示,Φijk称为逆变分量,Φijk称为协变分量,其他称为混合分量3阶张量有8中表示,\Phi^{ijk}称为逆变分量,\Phi_{ijk}称为协变分量,其他称为混合分量3阶张量有8中表示,Φijk称为逆变分量,Φijk称为协变分量,其他称为混合分量