1、姿态误差
ϕ˙=Maaϕ+Mavδvn+Mapδp−ωibxbCbnδKGx−ωibybCbnδKGy−ωibzbCbnδKGz−Cnbεb
\dot \phi =
M_{aa}\phi +
M_{av}\delta v^n +
M_{ap}\delta p -
\omega_{ibx}^{b} C_b^n \delta K_{Gx} -
\omega_{iby}^{b} C_b^n \delta K_{Gy} -
\omega_{ibz}^{b} C_b^n \delta K_{Gz} -
C_n^b \varepsilon^b
ϕ˙=Maaϕ+Mavδvn+Mapδp−ωibxbCbnδKGx−ωibybCbnδKGy−ωibzbCbnδKGz−Cnbεb
=[MaaMavMap−CbnO3×3][ϕT(δvn)T(δpn)T(εb)T(∇b)T]−ωibxbCbnδKGx−ωibybCbnδKGy−ωibzbCbnδKGz
= \begin{bmatrix}
M_{aa} & M_{av} & M_{ap} & -C_b^n & O_{3×3}
\end{bmatrix}
\begin{bmatrix}
\phi^T \\
\\
(\delta v^n)^T \\
\\
(\delta p^n)^T \\
\\
(\varepsilon^b)^T \\
\\
(\nabla^b)^T \\
\end{bmatrix} -
\omega_{ibx}^{b} C_b^n \delta K_{Gx} -
\omega_{iby}^{b} C_b^n \delta K_{Gy} -
\omega_{ibz}^{b} C_b^n \delta K_{Gz}
=[MaaMavMap−CbnO3×3]⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡ϕT(δvn)T(δpn)T(εb)T(∇b)T⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤−ωibxbCbnδKGx−ωibybCbnδKGy−ωibzbCbnδKGz
=[MaaMavMap−CbnO3×3][ϕT(δvn)T(δpn)T(εb)T(∇b)T]−CbnWgb
= \begin{bmatrix}
M_{aa} & M_{av} & M_{ap} & -C_b^n & O_{3×3}
\end{bmatrix}
\begin{bmatrix}
\phi^T \\
\\
(\delta v^n)^T \\
\\
(\delta p^n)^T \\
\\
(\varepsilon^b)^T \\
\\
(\nabla^b)^T \\
\end{bmatrix} -
C_b^n W_g^b
=[MaaMavMap−CbnO3×3]⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡ϕT(δvn)T(δpn)T(εb)T(∇b)T⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤−CbnWgb
其中:
Maa=−(ωinn×), Mav=[0−1/RMh01/RNh00tanL/RNh00], Map=M1+M2
M_{aa}=-(\omega_{in}^n×),\space\space
M_{av}=
\begin{bmatrix}
0 & -1/R_{Mh} & 0 \\
\\
1/R_{Nh} & 0 & 0 \\
\\
tanL/R_{Nh} & 0 & 0\\
\end{bmatrix} ,\space\space
M_{ap}=M_1+M_2
Maa=−(ωinn×), Mav=⎣⎢⎢⎢⎢⎡01/RNhtanL/RNh−1/RMh00000⎦⎥⎥⎥⎥⎤, Map=M1+M2
M1=[000−ωiesinL00ωiecosL00], M2=[00vNRMh200−vE/RNh2vEsec2L/RNh0−vEtanL/RNh2]
M_1 =
\begin{bmatrix}
0 & 0 & 0 \\
\\
-\omega_{ie}sinL & 0 & 0 \\
\\
\omega_{ie}cosL & 0 & 0 \\
\end{bmatrix} , \space\space
M_2 =
\begin{bmatrix}
0 & 0 & v_N R_{Mh}^2 \\
\\
0 & 0 & -v_E/R_{Nh}^2 \\
\\
v_Esec^2L/R_{Nh} & 0 & -v_E tanL/R_{Nh}^2 \\
\end{bmatrix}
M1=⎣⎢⎢⎢⎢⎡0−ωiesinLωiecosL000000⎦⎥⎥⎥⎥⎤, M2=⎣⎢⎢⎢⎢⎡00vEsec2L/RNh000vNRMh2−vE/RNh2−vEtanL/RNh2⎦⎥⎥⎥⎥⎤
Wgb=ωibxbδKGx+ωibybδKGy+ωibzbδKGz
W_g^b =
\omega_{ibx}^{b} \delta K_{Gx} +
\omega_{iby}^{b} \delta K_{Gy} +
\omega_{ibz}^{b} \delta K_{Gz}
Wgb=ωibxbδKGx+ωibybδKGy+ωibzbδKGz
2、速度误差
δv˙n=Mvaϕ+Mvvδvn+Mvpδp+fsfxbCbnδKAx+fsfybCbnδKAy+fsfzbCbnδKAz+Cnb∇b \delta \dot v^n = M_{va}\phi + M_{vv}\delta v^n + M_{vp}\delta p + f_{sfx}^{b} C_b^n \delta K_{Ax} + f_{sfy}^{b} C_b^n \delta K_{Ay} + f_{sfz}^{b} C_b^n \delta K_{Az} + C_n^b \nabla^b δv˙n=Mvaϕ+Mvvδvn+Mvpδp+fsfxbCbnδKAx+fsfybCbnδKAy+fsfzbCbnδKAz+Cnb∇b
=[MvaMvvMvpO3×3Cbn][ϕT(δvn)T(δpn)T(εb)T(∇b)T]+fsfxbCbnδKAx+fsfybCbnδKAy+fsfzbCbnδKAz
= \begin{bmatrix}
M_{va} & M_{vv} & M_{vp} & O_{3×3} & C_b^n
\end{bmatrix}
\begin{bmatrix}
\phi^T \\
\\
(\delta v^n)^T \\
\\
(\delta p^n)^T \\
\\
(\varepsilon^b)^T \\
\\
(\nabla^b)^T \\
\end{bmatrix} +
f_{sfx}^{b} C_b^n \delta K_{Ax} +
f_{sfy}^{b} C_b^n \delta K_{Ay} +
f_{sfz}^{b} C_b^n \delta K_{Az}
=[MvaMvvMvpO3×3Cbn]⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡ϕT(δvn)T(δpn)T(εb)T(∇b)T⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤+fsfxbCbnδKAx+fsfybCbnδKAy+fsfzbCbnδKAz
=[MvaMvvMvpO3×3Cbn][ϕT(δvn)T(δpn)T(εb)T(∇b)T]+CbnWab
= \begin{bmatrix}
M_{va} & M_{vv} & M_{vp} & O_{3×3} & C_b^n
\end{bmatrix}
\begin{bmatrix}
\phi^T \\
\\
(\delta v^n)^T \\
\\
(\delta p^n)^T \\
\\
(\varepsilon^b)^T \\
\\
(\nabla^b)^T \\
\end{bmatrix} +
C_b^n W_a^b
=[MvaMvvMvpO3×3Cbn]⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡ϕT(δvn)T(δpn)T(εb)T(∇b)T⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤+CbnWab
其中:
Mva=(fsfn×)
M_{va} = (f_{sf}^n×)
Mva=(fsfn×)
Mvv=(vn×)Mav−((2ωien+ωenn)×)
M_{vv} = (v^n×)M_{av} - ((2\omega_{ie}^n+\omega_{en}^n)×)
Mvv=(vn×)Mav−((2ωien+ωenn)×)
Mvp=(vn×)(2M1+M2)+M3
M_{vp} = (v^n×)(2M_1+M_2)+M_3
Mvp=(vn×)(2M1+M2)+M3
Wab=fsfxbδKAx+fsfybδKAy+fsfzbδKAz
W_a^b=
f_{sfx}^{b} \delta K_{Ax} +
f_{sfy}^{b} \delta K_{Ay} +
f_{sfz}^{b} \delta K_{Az}
Wab=fsfxbδKAx+fsfybδKAy+fsfzbδKAz
3、位置误差
δp˙=Mpvδvn+Mppδp \delta \dot p = M_{pv}\delta v^n + M_{pp}\delta p δp˙=Mpvδvn+Mppδp
=[O3×3MpvMvpO3×3O3×3][ϕT(δvn)T(δpn)T(εb)T(∇b)T] = \begin{bmatrix} O_{3×3} & M_{pv} & M_{vp} & O_{3×3} & O_{3×3} \end{bmatrix} \begin{bmatrix} \phi^T \\ \\ (\delta v^n)^T \\ \\ (\delta p^n)^T \\ \\ (\varepsilon^b)^T \\ \\ (\nabla^b)^T \\ \end{bmatrix} =[O3×3MpvMvpO3×3O3×3]⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡ϕT(δvn)T(δpn)T(εb)T(∇b)T⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤
其中:
Mpv=[01/RMh0secL/RNh00001], Mpp=[00−vNRMh2vEsecLtanL/RNh0−vEsecL/RNh2000]
M_{pv}=
\begin{bmatrix}
0 & 1/R_{Mh} & 0 \\
\\
secL/R_{Nh} & 0 & 0\\
\\
0 & 0 & 1 \\
\end{bmatrix} , \space \space
M_{pp} =
\begin{bmatrix}
0 & 0 & -v_N R_{Mh}^2 \\
\\
v_E secLtanL/R_{Nh} & 0 & -v_E secL/R_{Nh}^2 \\
\\
0 & 0 & 0 \\
\end{bmatrix}
Mpv=⎣⎢⎢⎢⎢⎡0secL/RNh01/RMh00001⎦⎥⎥⎥⎥⎤, Mpp=⎣⎢⎢⎢⎢⎡0vEsecLtanL/RNh0000−vNRMh2−vEsecL/RNh20⎦⎥⎥⎥⎥⎤
综上所述
X˙=FX+GWb=[MaaMavMap−CbnO3×3MvaMvvMvpO3×3CbnO3×3MpvMvpO3×3O3×3O3×3O3×3O3×3O3×3O3×3O3×3O3×3O3×3O3×3O3×3][ϕT(δvn)T(δpn)T(εb)T(∇b)T]+[−CbnO3×3O3×3CbnO3×3O3×3O3×3O3×3O3×3O3×3][WgbWab]
\dot X = FX + GW^b
= \begin{bmatrix}
M_{aa} & M_{av} & M_{ap} & -C_b^n & O_{3×3} \\
\\
M_{va} & M_{vv} & M_{vp} & O_{3×3} & C_b^n \\
\\
O_{3×3} & M_{pv} & M_{vp} & O_{3×3} & O_{3×3} \\
\\
O_{3×3} & O_{3×3} & O_{3×3} & O_{3×3} & O_{3×3} \\
\\
O_{3×3} & O_{3×3} & O_{3×3} & O_{3×3} & O_{3×3} \\
\end{bmatrix}
\begin{bmatrix}
\phi^T \\
\\
(\delta v^n)^T \\
\\
(\delta p^n)^T \\
\\
(\varepsilon^b)^T \\
\\
(\nabla^b)^T \\
\end{bmatrix} +
\begin{bmatrix}
-C_b^n & O_{3×3}\\
\\
O_{3×3} & C_b^n \\
\\
O_{3×3} & O_{3×3} \\
\\
O_{3×3} & O_{3×3} \\
\\
O_{3×3} & O_{3×3} \\
\end{bmatrix}
\begin{bmatrix}
W_g^b \\
\\
W_a^b \\
\end{bmatrix}
X˙=FX+GWb=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡MaaMvaO3×3O3×3O3×3MavMvvMpvO3×3O3×3MapMvpMvpO3×3O3×3−CbnO3×3O3×3O3×3O3×3O3×3CbnO3×3O3×3O3×3⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡ϕT(δvn)T(δpn)T(εb)T(∇b)T⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡−CbnO3×3O3×3O3×3O3×3O3×3CbnO3×3O3×3O3×3⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎡WgbWab⎦⎤
此即为一种状态空间模型。
本文深入探讨了惯性导航系统中的姿态误差、速度误差及位置误差的数学模型,详细阐述了各误差项的组成及相互关系,为理解惯导系统的工作原理提供了理论依据。
1441

被折叠的 条评论
为什么被折叠?



