欧几里得二进制优化

首先,欧几里得又叫辗转相除法,gcd(a,b)=gcd(b,a%b)。证明略。

int gcd(int x,int y)
{
    return y==0?x:gcd(y,x%y);
}

如果想进一步提高GCD的效率,可以通过不断去除因子2来降低常数。
若x=y,则GCD(x,y)=x,否则:
(1)若x,y均为偶数,则GCD(x,y)=2*GCD(x/2,y/2);
(2)若x为偶数,y为奇数,则GCD(x,y)=GCD(x/2,y);
(3)若x为奇数,y为偶数,则GCD(x,y)=GCD(x,y/2);
(3)若x,y均为奇数,则GCD(x,y)=GCD(x-y,y);
代码如下:

inline int GCD(int x,int y)//欧几里得二进制算法优化
{
    int i,j;
    if(x==0)return y;
    if(y==0)return x;
    for(i=0;0==(x&1);i++)x>>=1;//去掉所有的2
    for(j=0;0==(y&1);j++)y>>=1;//去掉所有的2
    if(j<i)i=j;
    while(1)
    {
        if(x<y)x^=y,y^=x,x^=y;//若x<y交换x,y
        if(0==(x-=y))return y<<i;
        //若x==y,gcd==x==y(就是在辗转减,while(1)控制)
        while(0==(x&1))x>>=1;//去掉所有的2
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值