定理1:两个无穷小的和是无穷小。
注:有限个无穷小之和也是无穷小
定理2:有界函数与无穷小的乘积是无穷小。
推论:常数与无穷小的乘积是无穷小
推论:有限个无穷小的乘积是无穷小。
定理3:如果
lim
f
(
x
)
=
A
,
lim
g
(
x
)
=
B
\lim f(x) = A, \lim \mathrm{g}(x) = B
limf(x)=A,limg(x)=B ,那么
(1)
lim
[
f
(
x
)
±
g
(
x
)
]
=
lim
f
(
x
)
+
lim
g
(
x
)
=
A
±
B
\lim [f(x) \pm \mathrm{g}(x)] = \lim f(x) + \lim \mathrm{g}(x) = A \pm B
lim[f(x)±g(x)]=limf(x)+limg(x)=A±B ;
(2)
lim
[
f
(
x
)
⋅
g
(
x
)
]
=
lim
f
(
x
)
⋅
lim
g
(
x
)
=
A
⋅
B
\lim [f(x) \cdot \mathrm{g}(x)] = \lim f(x) \cdot \lim \mathrm{g}(x) = A \cdot B
lim[f(x)⋅g(x)]=limf(x)⋅limg(x)=A⋅B ;
(3)若又有
B
≠
0
B \neq 0
B=0 ,则
lim
f
(
x
)
g
(
x
)
=
lim
f
(
x
)
lim
g
(
x
)
=
A
B
\lim \cfrac{f(x)}{\mathrm{g}(x)} = \cfrac{\lim f(x)}{\lim \mathrm{g}(x)} = \cfrac{A}{B}
limg(x)f(x)=limg(x)limf(x)=BA 。
定理3中的(1)、(2)可以推广到有限个函数的情形。例如,如果
lim
f
(
x
)
\lim f(x)
limf(x) 、
lim
g
(
x
)
\lim \mathrm{g}(x)
limg(x) 、
lim
h
(
x
)
\lim h(x)
limh(x) 都存在,则有
lim
[
f
(
x
)
+
g
(
x
)
+
h
(
x
)
]
=
lim
f
(
x
)
+
lim
g
(
x
)
+
lim
h
(
x
)
,
lim
[
f
(
x
)
⋅
g
(
x
)
⋅
h
(
x
)
]
=
lim
f
(
x
)
⋅
lim
g
(
x
)
⋅
lim
h
(
x
)
.
\begin{align*} \lim [f(x) + \mathrm{g}(x) + h(x)] &= \lim f(x) +\lim \mathrm{g}(x) + \lim h(x) , \\ \lim [f(x) \cdot \mathrm{g}(x) \cdot h(x)] &= \lim f(x) \cdot\lim \mathrm{g}(x) \cdot \lim h(x) . \end{align*}
lim[f(x)+g(x)+h(x)]lim[f(x)⋅g(x)⋅h(x)]=limf(x)+limg(x)+limh(x),=limf(x)⋅limg(x)⋅limh(x).
推论:如果
lim
f
(
x
)
\lim f(x)
limf(x) 存在,而
c
c
c 为常数,那么
lim
[
c
f
(
x
)
]
=
c
lim
f
(
x
)
\lim [c f(x)] = c \lim f(x)
lim[cf(x)]=climf(x)
推论:如果
lim
f
(
x
)
\lim f(x)
limf(x) 存在,而
n
n
n 为正整数,那么
lim
[
f
(
x
)
]
n
=
[
lim
f
(
x
)
]
n
\lim [f(x)]^n = [\lim f(x)]^n
lim[f(x)]n=[limf(x)]n
定理4:设有数列
{
x
n
}
\{ x_n \}
{xn} 和
{
y
n
}
\{ y_n \}
{yn} .如果
lim
n
→
∞
x
n
=
A
,
lim
n
→
∞
=
B
,
\lim_{n \to \infty} x_n = A, \quad \lim_{n \to \infty} = B ,
n→∞limxn=A,n→∞lim=B,
那么
(1)
lim
n
→
∞
(
x
n
±
y
n
)
=
A
±
B
\lim \limits_{n \to \infty} (x_n \pm y_n) = A \pm B
n→∞lim(xn±yn)=A±B ;
(2)
lim
n
→
∞
(
x
n
⋅
y
n
)
=
A
⋅
B
\lim \limits_{n \to \infty} (x_n \cdot y_n) = A \cdot B
n→∞lim(xn⋅yn)=A⋅B ;
(3)当
y
n
≠
0
(
n
=
1
,
2
,
⋯
)
y_n \neq 0(n = 1, 2, \cdots)
yn=0(n=1,2,⋯) 且
B
≠
0
B \neq 0
B=0 时,
lim
n
→
∞
x
n
y
n
=
A
B
\lim \limits_{n \to \infty} \cfrac{x_n}{y_n} = \cfrac{A}{B}
n→∞limynxn=BA .
定理5:如果 φ ( x ) ⩾ ψ ( x ) \varphi (x) \geqslant \psi (x) φ(x)⩾ψ(x) ,而 lim φ ( x ) = A , ψ ( x ) = B \lim \varphi (x) = A, \psi (x) = B limφ(x)=A,ψ(x)=B ,那么 A ⩾ B A \geqslant B A⩾B 。
例1 求
lim
x
→
1
(
2
x
−
1
)
\lim \limits_{x \to 1} (2x - 1)
x→1lim(2x−1) .
解:
lim
x
→
1
(
2
x
−
1
)
=
lim
x
→
1
2
x
−
lim
x
→
1
1
=
2
lim
x
→
1
x
−
1
=
2
−
1
=
1
\lim \limits_{x \to 1} (2x - 1) = \lim \limits_{x \to 1} 2x - \lim \limits_{x \to 1}1 = 2 \lim \limits_{x \to 1} x - 1 = 2 - 1 =1
x→1lim(2x−1)=x→1lim2x−x→1lim1=2x→1limx−1=2−1=1
例2 求
lim
x
→
2
x
3
−
1
x
2
−
5
x
+
3
\lim \limits_{x \to 2} \cfrac{x^3 - 1}{x^2 - 5x + 3}
x→2limx2−5x+3x3−1
解:这里分母的极限不为零,故
lim
x
→
2
x
3
−
1
x
2
−
5
x
+
3
=
lim
x
→
2
(
x
3
−
1
)
lim
x
→
2
(
x
2
−
5
x
+
3
)
=
lim
x
→
2
x
3
−
1
lim
x
→
2
x
2
−
5
lim
x
→
2
x
+
3
=
(
lim
x
→
2
x
)
3
−
1
(
lim
x
→
2
x
)
2
−
5
⋅
2
+
3
=
2
3
−
1
2
2
−
10
+
3
=
−
7
3
.
\begin{align*} \lim_{x \to 2} \cfrac{x^3 - 1}{x^2 - 5x + 3} &= \cfrac{\lim \limits_{x \to 2} (x^3 - 1)}{\lim \limits_{x \to 2} (x^2 - 5x + 3)} \\ &= \cfrac{\lim \limits_{x \to 2} x^3 - 1}{\lim \limits_{x \to 2} x^2 - 5 \lim \limits_{x \to 2} x + 3} \\ &= \cfrac{(\lim \limits_{x \to 2} x)^3 - 1}{(\lim \limits_{x \to 2} x)^2 - 5 \cdot 2 + 3} \\ &= \cfrac{2^3 - 1}{2^2 - 10 + 3} = - \cfrac{7}{3} . \end{align*}
x→2limx2−5x+3x3−1=x→2lim(x2−5x+3)x→2lim(x3−1)=x→2limx2−5x→2limx+3x→2limx3−1=(x→2limx)2−5⋅2+3(x→2limx)3−1=22−10+323−1=−37.
从上面两个例题中可以看出,求 有理函数(多项式) 或 有理分式函数 当 x → x 0 x \to x_0 x→x0 的极限时,只要把 x 0 x_0 x0 代替函数中的 x x x 就行了(对于有理分式函数,需假定这样代入后分母不等于零)。
事实上,设多项式
f
(
x
)
=
a
0
x
n
+
a
1
x
n
−
1
+
⋯
+
a
n
f(x) = a_0 x^n + a_1 x^{n - 1} + \cdots + a_n
f(x)=a0xn+a1xn−1+⋯+an
则
lim
x
→
x
0
f
(
x
)
=
lim
x
→
x
0
(
a
0
x
n
+
a
1
x
n
−
1
+
⋯
+
a
n
)
=
a
0
(
lim
x
→
x
0
x
)
n
+
a
1
(
lim
x
→
x
0
x
)
n
−
1
+
⋯
+
lim
x
→
x
0
a
n
=
a
0
x
0
n
+
a
1
x
0
n
−
1
+
⋯
+
a
n
=
f
(
x
0
)
\begin{align*} \lim_{x \to x_0} f(x) &= \lim_{x \to x_0} (a_0 x^n + a_1 x^{n - 1} + \cdots + a_n) \\ &= a_0 (\lim_{x \to x_0} x)^n + a_1 (\lim_{x \to x_0} x)^{n - 1} + \cdots + \lim_{x \to x_0} a_n \\ &= a_0 x_0^n + a_1 x_0^{n - 1} + \cdots +a_n \\ &= f(x_0) \end{align*}
x→x0limf(x)=x→x0lim(a0xn+a1xn−1+⋯+an)=a0(x→x0limx)n+a1(x→x0limx)n−1+⋯+x→x0liman=a0x0n+a1x0n−1+⋯+an=f(x0)
又设有理分式函数
F
(
x
)
=
P
(
x
)
Q
(
x
)
,
F(x) = \cfrac{P(x)}{Q(x)} ,
F(x)=Q(x)P(x),
其中
P
(
x
)
,
Q
(
x
)
P(x), Q(x)
P(x),Q(x) 都是多项式,于是
lim
x
→
x
0
P
(
x
)
=
P
(
x
0
)
,
lim
x
→
x
0
Q
(
x
)
=
Q
(
x
0
)
;
\lim_{x \to x_0} P(x) = P(x_0), \quad \lim_{x \to x_0} Q(x) = Q(x_0) ;
x→x0limP(x)=P(x0),x→x0limQ(x)=Q(x0);
如果
Q
(
x
0
)
≠
0
Q(x_0) \neq 0
Q(x0)=0 ,那么
lim
x
→
x
0
F
(
x
)
=
lim
x
→
x
0
P
(
x
)
Q
(
x
)
=
lim
x
→
x
0
P
(
x
)
lim
x
→
x
0
Q
(
x
)
=
P
(
x
0
)
Q
(
x
0
)
=
F
(
x
0
)
.
\lim_{x \to x_0} F(x) = \lim_{x \to x_0} \cfrac{P(x)}{Q(x)} = \cfrac{\lim \limits_{x \to x_0} P(x)}{\lim \limits_{x \to x_0} Q(x)} = \cfrac{P(x_0)}{Q(x_0)} = F(x_0) .
x→x0limF(x)=x→x0limQ(x)P(x)=x→x0limQ(x)x→x0limP(x)=Q(x0)P(x0)=F(x0).
但必须注意:若
Q
(
x
0
)
=
0
Q(x_0) = 0
Q(x0)=0 ,则关于上的极限的运算法则不能应用,需要特别考虑。
例3 求
lim
x
→
3
=
x
−
3
x
2
−
9
\lim \limits_{x \to 3} = \cfrac{x - 3}{x^2 - 9}
x→3lim=x2−9x−3
解:当
x
→
3
x \to 3
x→3 时,分子及分母的极限都是零,于是分子分母不能分别取极限。因分子及分母有公因子
x
−
3
x - 3
x−3 ,而
x
→
3
x \to 3
x→3 时,
x
≠
3
,
x
−
3
≠
0
x \neq 3, x - 3 \neq 0
x=3,x−3=0 ,可以约去这个不为零的公因子。所以
lim
x
→
3
=
x
−
3
x
2
−
9
=
lim
x
→
3
=
x
−
3
(
x
+
3
)
(
x
−
3
)
=
lim
x
→
3
1
x
+
3
=
1
6
\lim_{x \to 3} = \cfrac{x - 3}{x^2 - 9} = \lim_{x \to 3} = \cfrac{x - 3}{(x + 3)(x - 3)} = \lim_{x \to 3} \cfrac{1}{x + 3} = \cfrac{1}{6}
x→3lim=x2−9x−3=x→3lim=(x+3)(x−3)x−3=x→3limx+31=61
例4 求
lim
x
→
1
2
x
−
3
x
2
−
5
x
+
4
\lim \limits_{x \to 1} \cfrac{2x - 3}{x^2 - 5x + 4}
x→1limx2−5x+42x−3 .
解:因为分母的极限
lim
x
→
1
(
x
2
−
5
x
+
4
)
=
1
2
−
5
⋅
1
+
4
=
0
\lim \limits_{x \to 1} (x^2 - 5x + 4) = 1^2 - 5 \cdot 1 + 4 = 0
x→1lim(x2−5x+4)=12−5⋅1+4=0 ,不能应用商的极限的运算法则,但因
lim
x
→
1
x
2
−
5
x
+
4
2
x
−
3
=
1
2
−
5
⋅
1
+
4
2
⋅
1
−
3
=
0
\lim_{x \to 1} \cfrac{x^2 - 5x + 4}{2x - 3} = \cfrac{1^2 - 5 \cdot 1 + 4}{2 \cdot 1 - 3} = 0
x→1lim2x−3x2−5x+4=2⋅1−312−5⋅1+4=0
可得
lim
x
→
1
2
x
−
3
x
2
−
5
x
+
4
=
∞
.
\lim_{x \to 1} \cfrac{2x - 3}{x^2 - 5x + 4} = \infty .
x→1limx2−5x+42x−3=∞.
例5 求
lim
x
→
∞
3
x
3
+
4
x
2
+
2
7
x
3
+
5
x
2
−
3
\lim \limits_{x \to \infty} \cfrac{3x^3 + 4x^2 + 2}{7x^3 + 5x^2 - 3}
x→∞lim7x3+5x2−33x3+4x2+2 .
解:先用
x
3
x^3
x3 去除分子及分母,然后取极限,得
lim
x
→
∞
3
x
3
+
4
x
2
+
2
7
x
3
+
5
x
2
−
3
=
lim
x
→
∞
3
+
4
x
+
2
x
3
7
+
5
x
−
3
x
3
=
3
7
,
\lim_{x \to \infty} \cfrac{3x^3 + 4x^2 + 2}{7x^3 + 5x^2 - 3} = \lim_{x \to \infty} \cfrac{3 + \cfrac{4}{x} + \cfrac{2}{x^3}}{7 + \cfrac{5}{x} - \cfrac{3}{x^3}} = \cfrac{3}{7} ,
x→∞lim7x3+5x2−33x3+4x2+2=x→∞lim7+x5−x333+x4+x32=73,
这是因为
lim
x
→
∞
a
x
n
=
a
lim
x
→
∞
1
x
n
=
a
(
lim
x
→
∞
1
x
)
n
=
0
\lim_{x \to \infty} \cfrac{a}{x^n} = a \lim_{x \to \infty} \cfrac{1}{x^n} = a \left( \lim_{x \to \infty} \cfrac{1}{x} \right)^n = 0
x→∞limxna=ax→∞limxn1=a(x→∞limx1)n=0
其中
a
a
a 为常数,
n
n
n 为正整数,
lim
x
→
∞
1
x
=
0
\lim \limits_{x \to \infty} \cfrac{1}{x} = 0
x→∞limx1=0 .
例6 求
lim
x
→
∞
3
x
2
−
2
x
−
1
2
x
3
−
x
2
+
5
\lim \limits_{x \to \infty} \cfrac{3x^2 - 2x - 1}{2x^3 - x^2 + 5}
x→∞lim2x3−x2+53x2−2x−1 .
解:先用
x
3
x^3
x3 去除分子和分母,然后取极限,得
lim
x
→
∞
3
x
2
−
2
x
−
1
2
x
3
−
x
2
+
5
=
lim
x
→
∞
3
x
−
2
x
2
−
1
x
3
2
−
1
x
+
5
x
3
=
0
2
=
0.
\lim_{x \to \infty} \cfrac{3x^2 - 2x - 1}{2x^3 - x^2 + 5} = \lim_{x \to \infty} \cfrac{\cfrac{3}{x} - \cfrac{2}{x^2} - \cfrac{1}{x^3}}{2 - \cfrac{1}{x} + \cfrac{5}{x^3}} = \cfrac{0}{2} = 0 .
x→∞lim2x3−x2+53x2−2x−1=x→∞lim2−x1+x35x3−x22−x31=20=0.
例7 求
lim
x
→
∞
2
x
3
−
x
2
+
5
3
x
2
−
2
x
−
1
\lim \limits_{x \to \infty} \cfrac{2x^3 - x^2 + 5}{3x^2 - 2x - 1}
x→∞lim3x2−2x−12x3−x2+5 .
解:应用例6的结果及相关定理,可得
lim
x
→
∞
2
x
3
−
x
2
+
5
3
x
2
−
2
x
−
1
=
∞
.
\lim_{x \to \infty} \cfrac{2x^3 - x^2 + 5}{3x^2 - 2x - 1} = \infty .
x→∞lim3x2−2x−12x3−x2+5=∞.
例5、例6、例7是下列一般情形的特例,即当
a
0
≠
0
,
b
0
≠
0
a_0 \neq 0, b_0 \neq 0
a0=0,b0=0 ,
m
m
m 和
n
n
n 为非负整数时,有
lim
x
→
∞
=
a
0
x
m
+
a
1
x
m
−
1
+
⋯
+
a
m
b
0
x
n
+
b
1
x
n
−
1
+
⋯
+
b
n
=
{
0
,
当
n
>
m
,
a
0
b
0
,
当
n
=
m
,
∞
,
当
n
<
m
.
\lim_{x \to \infty} = \cfrac{a_0 x^m + a_1 x^{m - 1} + \cdots + a_m}{b_0 x^n +b_1 x^{n - 1} + \cdots + b_n} = \begin{cases} 0 ,& 当 n > m , \\ \cfrac{a_0}{b_0} ,& 当 n = m , \\ \infty , & 当 n < m . \end{cases}
x→∞lim=b0xn+b1xn−1+⋯+bna0xm+a1xm−1+⋯+am=⎩
⎨
⎧0,b0a0,∞,当n>m,当n=m,当n<m.
例8 求
lim
x
→
∞
sin
x
x
\lim \limits_{x \to \infty} \cfrac{\sin x}{x}
x→∞limxsinx .
解:当
x
→
∞
x \to \infty
x→∞ 时,分子及分母的极限都不存在,故关于商的极限的运算法则不能应用。如果把
sin
x
x
\cfrac{\sin x}{x}
xsinx 看做
sin
x
\sin x
sinx 与
1
x
\cfrac{1}{x}
x1 的乘积,由于
1
x
\cfrac{1}{x}
x1 当
x
→
∞
x \to \infty
x→∞ 时为无穷小,而
sin
x
\sin x
sinx 是有界函数,则根据定理有
lim
x
→
∞
sin
x
x
=
0.
\lim_{x \to \infty} \cfrac{\sin x}{x} = 0 .
x→∞limxsinx=0.
定理6(复合函数的极限运算法则) :设函数
y
=
f
[
g
(
x
)
]
y = f[\mathrm{g} (x)]
y=f[g(x)] 是由函数
u
=
g
(
x
)
u = \mathrm{g} (x)
u=g(x) 与函数
y
=
f
(
u
)
y = f(u)
y=f(u) 复合而成,
f
[
g
(
x
)
]
f[\mathrm{g} (x)]
f[g(x)] 在点
x
0
x_0
x0 的某去心邻域内有定义,若
lim
x
→
x
0
g
(
x
)
=
u
0
,
lim
u
→
u
0
f
(
u
)
=
A
\lim \limits_{x \to x_0} \mathrm{g}(x) = u_0, \lim \limits_{u \to u_0} f(u) = A
x→x0limg(x)=u0,u→u0limf(u)=A ,且存在
δ
0
>
0
\delta_0 > 0
δ0>0 ,当
x
∈
U
˚
(
x
0
,
δ
0
)
x \in \mathring{U}(x_0, \delta_0)
x∈U˚(x0,δ0) 时,有
g
(
x
)
≠
u
0
\mathrm{g}(x) \neq u_0
g(x)=u0 ,则
lim
x
→
x
0
f
[
g
(
x
)
]
=
lim
u
→
u
0
f
(
u
)
=
A
.
\lim_{x \to x_0} f[\mathrm{g}(x)] = \lim_{u \to u_0} f(u) = A .
x→x0limf[g(x)]=u→u0limf(u)=A.
原文链接:高等数学 1.5极限运算法则