高等数学 1.5极限运算法则

定理1:两个无穷小的和是无穷小。
注:有限个无穷小之和也是无穷小

定理2有界函数与无穷小的乘积是无穷小。

推论:常数与无穷小的乘积是无穷小

推论有限个无穷小的乘积是无穷小。

定理3:如果 lim ⁡ f ( x ) = A , lim ⁡ g ( x ) = B \lim f(x) = A, \lim \mathrm{g}(x) = B limf(x)=A,limg(x)=B ,那么
(1) lim ⁡ [ f ( x ) ± g ( x ) ] = lim ⁡ f ( x ) + lim ⁡ g ( x ) = A ± B \lim [f(x) \pm \mathrm{g}(x)] = \lim f(x) + \lim \mathrm{g}(x) = A \pm B lim[f(x)±g(x)]=limf(x)+limg(x)=A±B
(2) lim ⁡ [ f ( x ) ⋅ g ( x ) ] = lim ⁡ f ( x ) ⋅ lim ⁡ g ( x ) = A ⋅ B \lim [f(x) \cdot \mathrm{g}(x)] = \lim f(x) \cdot \lim \mathrm{g}(x) = A \cdot B lim[f(x)g(x)]=limf(x)limg(x)=AB
(3)若又有 B ≠ 0 B \neq 0 B=0 ,则 lim ⁡ f ( x ) g ( x ) = lim ⁡ f ( x ) lim ⁡ g ( x ) = A B \lim \cfrac{f(x)}{\mathrm{g}(x)} = \cfrac{\lim f(x)}{\lim \mathrm{g}(x)} = \cfrac{A}{B} limg(x)f(x)=limg(x)limf(x)=BA

定理3中的(1)、(2)可以推广到有限个函数的情形。例如,如果 lim ⁡ f ( x ) \lim f(x) limf(x) lim ⁡ g ( x ) \lim \mathrm{g}(x) limg(x) lim ⁡ h ( x ) \lim h(x) limh(x) 都存在,则有
lim ⁡ [ f ( x ) + g ( x ) + h ( x ) ] = lim ⁡ f ( x ) + lim ⁡ g ( x ) + lim ⁡ h ( x ) , lim ⁡ [ f ( x ) ⋅ g ( x ) ⋅ h ( x ) ] = lim ⁡ f ( x ) ⋅ lim ⁡ g ( x ) ⋅ lim ⁡ h ( x ) . \begin{align*} \lim [f(x) + \mathrm{g}(x) + h(x)] &= \lim f(x) +\lim \mathrm{g}(x) + \lim h(x) , \\ \lim [f(x) \cdot \mathrm{g}(x) \cdot h(x)] &= \lim f(x) \cdot\lim \mathrm{g}(x) \cdot \lim h(x) . \end{align*} lim[f(x)+g(x)+h(x)]lim[f(x)g(x)h(x)]=limf(x)+limg(x)+limh(x),=limf(x)limg(x)limh(x).

推论:如果 lim ⁡ f ( x ) \lim f(x) limf(x) 存在,而 c c c 为常数,那么
lim ⁡ [ c f ( x ) ] = c lim ⁡ f ( x ) \lim [c f(x)] = c \lim f(x) lim[cf(x)]=climf(x)

推论:如果 lim ⁡ f ( x ) \lim f(x) limf(x) 存在,而 n n n 为正整数,那么
lim ⁡ [ f ( x ) ] n = [ lim ⁡ f ( x ) ] n \lim [f(x)]^n = [\lim f(x)]^n lim[f(x)]n=[limf(x)]n

定理4:设有数列 { x n } \{ x_n \} {xn} { y n } \{ y_n \} {yn} .如果
lim ⁡ n → ∞ x n = A , lim ⁡ n → ∞ = B , \lim_{n \to \infty} x_n = A, \quad \lim_{n \to \infty} = B , nlimxn=A,nlim=B,
那么
(1) lim ⁡ n → ∞ ( x n ± y n ) = A ± B \lim \limits_{n \to \infty} (x_n \pm y_n) = A \pm B nlim(xn±yn)=A±B
(2) lim ⁡ n → ∞ ( x n ⋅ y n ) = A ⋅ B \lim \limits_{n \to \infty} (x_n \cdot y_n) = A \cdot B nlim(xnyn)=AB
(3)当 y n ≠ 0 ( n = 1 , 2 , ⋯   ) y_n \neq 0(n = 1, 2, \cdots) yn=0(n=1,2,) B ≠ 0 B \neq 0 B=0 时, lim ⁡ n → ∞ x n y n = A B \lim \limits_{n \to \infty} \cfrac{x_n}{y_n} = \cfrac{A}{B} nlimynxn=BA .

定理5:如果 φ ( x ) ⩾ ψ ( x ) \varphi (x) \geqslant \psi (x) φ(x)ψ(x) ,而 lim ⁡ φ ( x ) = A , ψ ( x ) = B \lim \varphi (x) = A, \psi (x) = B limφ(x)=A,ψ(x)=B ,那么 A ⩾ B A \geqslant B AB

例1 求 lim ⁡ x → 1 ( 2 x − 1 ) \lim \limits_{x \to 1} (2x - 1) x1lim(2x1) .
解: lim ⁡ x → 1 ( 2 x − 1 ) = lim ⁡ x → 1 2 x − lim ⁡ x → 1 1 = 2 lim ⁡ x → 1 x − 1 = 2 − 1 = 1 \lim \limits_{x \to 1} (2x - 1) = \lim \limits_{x \to 1} 2x - \lim \limits_{x \to 1}1 = 2 \lim \limits_{x \to 1} x - 1 = 2 - 1 =1 x1lim(2x1)=x1lim2xx1lim1=2x1limx1=21=1

例2 求 lim ⁡ x → 2 x 3 − 1 x 2 − 5 x + 3 \lim \limits_{x \to 2} \cfrac{x^3 - 1}{x^2 - 5x + 3} x2limx25x+3x31
解:这里分母的极限不为零,故
lim ⁡ x → 2 x 3 − 1 x 2 − 5 x + 3 = lim ⁡ x → 2 ( x 3 − 1 ) lim ⁡ x → 2 ( x 2 − 5 x + 3 ) = lim ⁡ x → 2 x 3 − 1 lim ⁡ x → 2 x 2 − 5 lim ⁡ x → 2 x + 3 = ( lim ⁡ x → 2 x ) 3 − 1 ( lim ⁡ x → 2 x ) 2 − 5 ⋅ 2 + 3 = 2 3 − 1 2 2 − 10 + 3 = − 7 3 . \begin{align*} \lim_{x \to 2} \cfrac{x^3 - 1}{x^2 - 5x + 3} &= \cfrac{\lim \limits_{x \to 2} (x^3 - 1)}{\lim \limits_{x \to 2} (x^2 - 5x + 3)} \\ &= \cfrac{\lim \limits_{x \to 2} x^3 - 1}{\lim \limits_{x \to 2} x^2 - 5 \lim \limits_{x \to 2} x + 3} \\ &= \cfrac{(\lim \limits_{x \to 2} x)^3 - 1}{(\lim \limits_{x \to 2} x)^2 - 5 \cdot 2 + 3} \\ &= \cfrac{2^3 - 1}{2^2 - 10 + 3} = - \cfrac{7}{3} . \end{align*} x2limx25x+3x31=x2lim(x25x+3)x2lim(x31)=x2limx25x2limx+3x2limx31=(x2limx)252+3(x2limx)31=2210+3231=37.

从上面两个例题中可以看出,求 有理函数(多项式)有理分式函数 x → x 0 x \to x_0 xx0 的极限时,只要把 x 0 x_0 x0 代替函数中的 x x x 就行了(对于有理分式函数,需假定这样代入后分母不等于零)。

事实上,设多项式
f ( x ) = a 0 x n + a 1 x n − 1 + ⋯ + a n f(x) = a_0 x^n + a_1 x^{n - 1} + \cdots + a_n f(x)=a0xn+a1xn1++an

lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 ( a 0 x n + a 1 x n − 1 + ⋯ + a n ) = a 0 ( lim ⁡ x → x 0 x ) n + a 1 ( lim ⁡ x → x 0 x ) n − 1 + ⋯ + lim ⁡ x → x 0 a n = a 0 x 0 n + a 1 x 0 n − 1 + ⋯ + a n = f ( x 0 ) \begin{align*} \lim_{x \to x_0} f(x) &= \lim_{x \to x_0} (a_0 x^n + a_1 x^{n - 1} + \cdots + a_n) \\ &= a_0 (\lim_{x \to x_0} x)^n + a_1 (\lim_{x \to x_0} x)^{n - 1} + \cdots + \lim_{x \to x_0} a_n \\ &= a_0 x_0^n + a_1 x_0^{n - 1} + \cdots +a_n \\ &= f(x_0) \end{align*} xx0limf(x)=xx0lim(a0xn+a1xn1++an)=a0(xx0limx)n+a1(xx0limx)n1++xx0liman=a0x0n+a1x0n1++an=f(x0)

又设有理分式函数
F ( x ) = P ( x ) Q ( x ) , F(x) = \cfrac{P(x)}{Q(x)} , F(x)=Q(x)P(x),
其中 P ( x ) , Q ( x ) P(x), Q(x) P(x),Q(x) 都是多项式,于是
lim ⁡ x → x 0 P ( x ) = P ( x 0 ) , lim ⁡ x → x 0 Q ( x ) = Q ( x 0 ) ; \lim_{x \to x_0} P(x) = P(x_0), \quad \lim_{x \to x_0} Q(x) = Q(x_0) ; xx0limP(x)=P(x0),xx0limQ(x)=Q(x0);
如果 Q ( x 0 ) ≠ 0 Q(x_0) \neq 0 Q(x0)=0 ,那么
lim ⁡ x → x 0 F ( x ) = lim ⁡ x → x 0 P ( x ) Q ( x ) = lim ⁡ x → x 0 P ( x ) lim ⁡ x → x 0 Q ( x ) = P ( x 0 ) Q ( x 0 ) = F ( x 0 ) . \lim_{x \to x_0} F(x) = \lim_{x \to x_0} \cfrac{P(x)}{Q(x)} = \cfrac{\lim \limits_{x \to x_0} P(x)}{\lim \limits_{x \to x_0} Q(x)} = \cfrac{P(x_0)}{Q(x_0)} = F(x_0) . xx0limF(x)=xx0limQ(x)P(x)=xx0limQ(x)xx0limP(x)=Q(x0)P(x0)=F(x0).
但必须注意:若 Q ( x 0 ) = 0 Q(x_0) = 0 Q(x0)=0 ,则关于上的极限的运算法则不能应用,需要特别考虑。

例3 求 lim ⁡ x → 3 = x − 3 x 2 − 9 \lim \limits_{x \to 3} = \cfrac{x - 3}{x^2 - 9} x3lim=x29x3
解:当 x → 3 x \to 3 x3 时,分子及分母的极限都是零,于是分子分母不能分别取极限。因分子及分母有公因子 x − 3 x - 3 x3 ,而 x → 3 x \to 3 x3 时, x ≠ 3 , x − 3 ≠ 0 x \neq 3, x - 3 \neq 0 x=3,x3=0 ,可以约去这个不为零的公因子。所以
lim ⁡ x → 3 = x − 3 x 2 − 9 = lim ⁡ x → 3 = x − 3 ( x + 3 ) ( x − 3 ) = lim ⁡ x → 3 1 x + 3 = 1 6 \lim_{x \to 3} = \cfrac{x - 3}{x^2 - 9} = \lim_{x \to 3} = \cfrac{x - 3}{(x + 3)(x - 3)} = \lim_{x \to 3} \cfrac{1}{x + 3} = \cfrac{1}{6} x3lim=x29x3=x3lim=(x+3)(x3)x3=x3limx+31=61

例4 求 lim ⁡ x → 1 2 x − 3 x 2 − 5 x + 4 \lim \limits_{x \to 1} \cfrac{2x - 3}{x^2 - 5x + 4} x1limx25x+42x3 .
解:因为分母的极限 lim ⁡ x → 1 ( x 2 − 5 x + 4 ) = 1 2 − 5 ⋅ 1 + 4 = 0 \lim \limits_{x \to 1} (x^2 - 5x + 4) = 1^2 - 5 \cdot 1 + 4 = 0 x1lim(x25x+4)=1251+4=0 ,不能应用商的极限的运算法则,但因
lim ⁡ x → 1 x 2 − 5 x + 4 2 x − 3 = 1 2 − 5 ⋅ 1 + 4 2 ⋅ 1 − 3 = 0 \lim_{x \to 1} \cfrac{x^2 - 5x + 4}{2x - 3} = \cfrac{1^2 - 5 \cdot 1 + 4}{2 \cdot 1 - 3} = 0 x1lim2x3x25x+4=2131251+4=0
可得
lim ⁡ x → 1 2 x − 3 x 2 − 5 x + 4 = ∞ . \lim_{x \to 1} \cfrac{2x - 3}{x^2 - 5x + 4} = \infty . x1limx25x+42x3=∞.

例5 求 lim ⁡ x → ∞ 3 x 3 + 4 x 2 + 2 7 x 3 + 5 x 2 − 3 \lim \limits_{x \to \infty} \cfrac{3x^3 + 4x^2 + 2}{7x^3 + 5x^2 - 3} xlim7x3+5x233x3+4x2+2 .
解:先用 x 3 x^3 x3 去除分子及分母,然后取极限,得
lim ⁡ x → ∞ 3 x 3 + 4 x 2 + 2 7 x 3 + 5 x 2 − 3 = lim ⁡ x → ∞ 3 + 4 x + 2 x 3 7 + 5 x − 3 x 3 = 3 7 , \lim_{x \to \infty} \cfrac{3x^3 + 4x^2 + 2}{7x^3 + 5x^2 - 3} = \lim_{x \to \infty} \cfrac{3 + \cfrac{4}{x} + \cfrac{2}{x^3}}{7 + \cfrac{5}{x} - \cfrac{3}{x^3}} = \cfrac{3}{7} , xlim7x3+5x233x3+4x2+2=xlim7+x5x333+x4+x32=73,
这是因为
lim ⁡ x → ∞ a x n = a lim ⁡ x → ∞ 1 x n = a ( lim ⁡ x → ∞ 1 x ) n = 0 \lim_{x \to \infty} \cfrac{a}{x^n} = a \lim_{x \to \infty} \cfrac{1}{x^n} = a \left( \lim_{x \to \infty} \cfrac{1}{x} \right)^n = 0 xlimxna=axlimxn1=a(xlimx1)n=0
其中 a a a 为常数, n n n 为正整数, lim ⁡ x → ∞ 1 x = 0 \lim \limits_{x \to \infty} \cfrac{1}{x} = 0 xlimx1=0 .

例6 求 lim ⁡ x → ∞ 3 x 2 − 2 x − 1 2 x 3 − x 2 + 5 \lim \limits_{x \to \infty} \cfrac{3x^2 - 2x - 1}{2x^3 - x^2 + 5} xlim2x3x2+53x22x1 .
解:先用 x 3 x^3 x3 去除分子和分母,然后取极限,得
lim ⁡ x → ∞ 3 x 2 − 2 x − 1 2 x 3 − x 2 + 5 = lim ⁡ x → ∞ 3 x − 2 x 2 − 1 x 3 2 − 1 x + 5 x 3 = 0 2 = 0. \lim_{x \to \infty} \cfrac{3x^2 - 2x - 1}{2x^3 - x^2 + 5} = \lim_{x \to \infty} \cfrac{\cfrac{3}{x} - \cfrac{2}{x^2} - \cfrac{1}{x^3}}{2 - \cfrac{1}{x} + \cfrac{5}{x^3}} = \cfrac{0}{2} = 0 . xlim2x3x2+53x22x1=xlim2x1+x35x3x22x31=20=0.

例7 求 lim ⁡ x → ∞ 2 x 3 − x 2 + 5 3 x 2 − 2 x − 1 \lim \limits_{x \to \infty} \cfrac{2x^3 - x^2 + 5}{3x^2 - 2x - 1} xlim3x22x12x3x2+5 .
解:应用例6的结果及相关定理,可得
lim ⁡ x → ∞ 2 x 3 − x 2 + 5 3 x 2 − 2 x − 1 = ∞ . \lim_{x \to \infty} \cfrac{2x^3 - x^2 + 5}{3x^2 - 2x - 1} = \infty . xlim3x22x12x3x2+5=∞.

例5、例6、例7是下列一般情形的特例,即当 a 0 ≠ 0 , b 0 ≠ 0 a_0 \neq 0, b_0 \neq 0 a0=0,b0=0 m m m n n n 为非负整数时,有
lim ⁡ x → ∞ = a 0 x m + a 1 x m − 1 + ⋯ + a m b 0 x n + b 1 x n − 1 + ⋯ + b n = { 0 , 当 n > m , a 0 b 0 , 当 n = m , ∞ , 当 n < m . \lim_{x \to \infty} = \cfrac{a_0 x^m + a_1 x^{m - 1} + \cdots + a_m}{b_0 x^n +b_1 x^{n - 1} + \cdots + b_n} = \begin{cases} 0 ,& 当 n > m , \\ \cfrac{a_0}{b_0} ,& 当 n = m , \\ \infty , & 当 n < m . \end{cases} xlim=b0xn+1xn1++bna0xm+a1xm1++am= 0,b0a0,,n>m,n=m,n<m.

例8 求 lim ⁡ x → ∞ sin ⁡ x x \lim \limits_{x \to \infty} \cfrac{\sin x}{x} xlimxsinx .
解:当 x → ∞ x \to \infty x 时,分子及分母的极限都不存在,故关于商的极限的运算法则不能应用。如果把 sin ⁡ x x \cfrac{\sin x}{x} xsinx 看做 sin ⁡ x \sin x sinx 1 x \cfrac{1}{x} x1 的乘积,由于 1 x \cfrac{1}{x} x1 x → ∞ x \to \infty x 时为无穷小,而 sin ⁡ x \sin x sinx 是有界函数,则根据定理有
lim ⁡ x → ∞ sin ⁡ x x = 0. \lim_{x \to \infty} \cfrac{\sin x}{x} = 0 . xlimxsinx=0.

定理6(复合函数的极限运算法则) :设函数 y = f [ g ( x ) ] y = f[\mathrm{g} (x)] y=f[g(x)] 是由函数 u = g ( x ) u = \mathrm{g} (x) u=g(x) 与函数 y = f ( u ) y = f(u) y=f(u) 复合而成, f [ g ( x ) ] f[\mathrm{g} (x)] f[g(x)] 在点 x 0 x_0 x0 的某去心邻域内有定义,若 lim ⁡ x → x 0 g ( x ) = u 0 , lim ⁡ u → u 0 f ( u ) = A \lim \limits_{x \to x_0} \mathrm{g}(x) = u_0, \lim \limits_{u \to u_0} f(u) = A xx0limg(x)=u0,uu0limf(u)=A ,且存在 δ 0 > 0 \delta_0 > 0 δ0>0 ,当 x ∈ U ˚ ( x 0 , δ 0 ) x \in \mathring{U}(x_0, \delta_0) xU˚(x0,δ0) 时,有 g ( x ) ≠ u 0 \mathrm{g}(x) \neq u_0 g(x)=u0 ,则
lim ⁡ x → x 0 f [ g ( x ) ] = lim ⁡ u → u 0 f ( u ) = A . \lim_{x \to x_0} f[\mathrm{g}(x)] = \lim_{u \to u_0} f(u) = A . xx0limf[g(x)]=uu0limf(u)=A.

原文链接:高等数学 1.5极限运算法则

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值