【车辆路径问题VRPTW】基于北极海鹦优化(APO)算法求解带时间窗的车辆路径问题VRPTW研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、研究背景与问题必要性

(一)VRPTW 的工程应用价值

带时间窗的车辆路径问题(Vehicle Routing Problem with Time Windows, VRPTW)是经典车辆路径问题(VRP)的重要拓展,核心是在满足客户时间窗约束的前提下,规划最优车辆行驶路线,实现运输成本最小化。其在物流配送、快递运输、城市冷链等领域应用广泛:例如,电商 “次日达” 配送中,需在客户指定的 8:00-12:00、14:00-18:00 等时间窗内完成送货;冷链运输中,生鲜产品需在特定时间窗送达以保证新鲜度。据物流行业数据统计,优化的 VRPTW 方案可使运输成本降低 15%-25%,车辆利用率提升 20% 以上,客户满意度提高 30%。

图片

(三)传统求解算法的局限性

现有 VRPTW 求解算法在复杂场景下存在明显短板:

  • 精确算法(如分支定界法、动态规划法):仅能求解小规模问题(客户数≤20),客户数超过 30 时计算时间呈指数级增长,难以满足实际物流的实时性需求;
  • 传统启发式算法(如节约算法、扫描算法):求解速度快但易陷入局部最优,对多时间窗、大容量约束场景的适配性差,优化精度低;
  • 经典智能优化算法(如遗传算法 GA、粒子群算法 PSO):虽能处理中大规模问题,但存在收敛速度慢、后期种群多样性不足的问题,在客户数超过 100 时,最优解质量显著下降;
  • 禁忌搜索、模拟退火算法:局部搜索能力强但全局探索能力弱,易错过全局最优解,且参数敏感性高,需反复调试。

北极海鹦优化(Arctic Puffin Optimization, APO)算法是 2022 年提出的新型群体智能算法,模拟北极海鹦 “海面俯冲 - 水下捕猎 - 群体协作” 的行为特性,具有全局探索能力强、收敛速度快、参数设置简单的优势,为 VRPTW 的高效求解提供了新路径。

二、核心技术原理与 APO 算法适配设计

(一)VRPTW 的数学建模

1. 问题假设

为简化建模,基于实际物流场景提出合理假设:

  • 配送中心位置固定,车辆型号统一,初始状态均位于配送中心;
  • 客户需求已知且不可拆分,每辆车仅服务一次客户;
  • 车辆行驶速度恒定,忽略交通拥堵等动态干扰(后续可通过动态 APO 改进);
  • 客户服务时间固定,服务完成后车辆立即离开。

图片

图片

图片

图片

图片

图片

图片

图片

⛳️ 运行结果

图片

🔗 参考文献

[1] 蒋波.基于遗传算法的带时间窗车辆路径优化问题研究[D].北京交通大学,2010.DOI:10.7666/d.y1780379.

[2] 崔雪丽,朱道立.带时间窗车辆路径问题的混合改进型蚂蚁算法[J].计算机工程与应用, 2009, 45(4):4.DOI:10.3778/j.issn.1002-8331.2009.04.005.

[3] 于滨,靳鹏欢,杨忠振.两阶段启发式算法求解带时间窗的多中心车辆路径问题[J].系统工程理论与实践, 2012, 32(8):1793-1800.DOI:10.3969/j.issn.1000-6788.2012.08.020.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值