简单CNN——作业(补充)

调度器种类

总共训练了15个epoch,结构为三层卷积层 + 两层全连接层。

ReduceLROnPlateau

scheduler = optim.lr_scheduler.ReduceLROnPlateau(
    optimizer=optimizer,        # 指定要控制的优化器(这里是Adam)
    mode='min',       # 监测的指标是"最小化"(如损失函数)
    patience=3,       # 如果连续3个epoch指标没有改善,才降低LR
    factor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)

最终测试集准确率为78.50 %,累计平均损失为0.7247

StepLR

scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)  

最终测试集准确率为78.63 %,累计平均损失为0.7534

MultiStepLR

scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[10, 20, 30], gamma=0.5)  

最终测试集准确率为79.17 %,累计平均损失为0.7035

CosineAnnealingLR

scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10, eta_min=0.0001)  

最终测试集准确率为78.05 %,累计平均损失为0.6986,整个训练内波动有点大。

在当前情况下(存在误差,每一个调度器只训练了一次),综合准确率和累计平均损失来看,使用MultiStepLR作为调度器的结果最好

调度器测试集准确率训练集准确率累计平均损失
ReduceLROnPlateau78.50%74.58%0.7247
StepLR78.63%73.80%0.7534
MultiStepLR79.17%75.36%0.7035
CosineAnnealingLR78.05%75.60%0.6986

CNN结构

增加一层全连接层,测试集准确率为79.06%,累计平均损失为0.7293

def forward(self, x):
        # 第一个卷积层后接ReLU激活函数和最大池化操作,经过池化后图像尺寸变为原来的一半,这里输出尺寸变为16x16
        x = self.pool(F.relu(self.conv1(x)))  # F.relu()不支持hook,无法监控中间结果
        # 第二个卷积层后接ReLU激活函数和最大池化操作,输出尺寸变为8x8
        x = self.pool(F.relu(self.conv2(x)))  
        # 第三个卷积层后接ReLU激活函数和最大池化操作,输出尺寸变为4x4
        x = self.pool(F.relu(self.conv3(x)))  
        # 将特征图展平为一维向量,以便输入到全连接层
        x = x.view(-1, 128 * 4 * 4)
        # 第一个全连接层后接ReLU激活函数
        x = F.relu(self.fc1(x))
        # 第二个全连接层后接ReLU激活函数
        x = F.relu(self.fc2(x))
        x = self.dropout(x) # p=0.5
        # 第三个全连接层输出分类结果
        x = self.fc3(x)
        return x

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值