《Towards End-to-End Lane Detection: an Instance Segmentation Approach》论文阅读之LaneNet + H-Net

本文详细解读了《Towards End-to-End Lane Detection: an Instance Segmentation Approach》论文,介绍了如何利用深度学习模型LaneNet和H-Net进行端到端的车道检测。LaneNet结合语义分割和实例分割,通过实例分割分支对像素进行聚类,而H-Net通过学习变换矩阵以适应不同图像的地平线变化,提高了车道线拟合的准确性。实验证明,该算法在tuSimple数据集上达到了96.4%的准确率和52FPS的处理速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文将对论文Towards End-to-End Lane Detection: an Instance Segmentation Approach进行解读。这篇论文是于2018年2月挂在arxiv上的。

摘要

当今很多车都带有辅助驾驶员的驾驶的功能,比如车道保持功能。该功能能使车辆保持在车道间的适当位置,这个功能对于有潜在车道偏离或者自动驾驶中的轨迹规划和决策都至关重要。传统的车道检测方法依赖于高度定义化,手工特征提取和启发式方法,通常是需要后处理技术,而这往往会使得计算量大,不利于道路场景多变下的应用扩展。最近越来越多的方法是借助深度学习建模,为像素级的车道分割做训练,即使当在大的感受野中并无车道标记的存在。尽管这类方法有他们的优势,但他们受限于检测一个预训练的,固定数量的车道线(比如本车道)问题,且无法处理车道变化。 本文,我们突破了前面提到的限制,将车道检测问题转为实例分割问题,从而每个车道线各自形成一个实例,这样就能够实现端到端的训练了。在分割车道线用于拟合车道之前,我们进一步提出采用一个已学习好的透视变换,在图像上做这种调整,与固定的鸟瞰图做对比。通过这么做,我们确保在道路平面变化下的车道线拟合的鲁棒性,不同于现有依赖于固定的且预先定义的透视变换矩阵的方法。总结就是,我们提出了一种快速车道检测的算法,运行帧率达50fps,能够处理多数车道和车道变换。本算法在tuSimple数据集中验证过且取得较有优势的结果。

主要贡献是两点,一个是利用

<think>我们正在寻找与FasterR-CNN相关的、可复现的实时目标检测论文,特别是那些包含区域提议网络(RPN)的改进或替代方案。FasterR-CNN本身虽然接近实时,但后续有许多工作进一步优化了速度和精度,并提供了可复现的代码(通常在GitHub上开源)。根据用户需求,我将重点介绍:1.核心的FasterR-CNN论文(基础)2.后续改进其速度或可复现性的关键论文(提供代码链接)3.其他使用RPN的实时检测框架注意:所有推荐论文均有公开代码实现(截至2023年),确保可复现性。###1.**核心可复现论文:FasterR-CNN(2015)**-**论文**:Ren,S.,He,K.,Girshick,R.,&Sun,J.(2015).FasterR-CNN:Towardsreal-timeobjectdetectionwithregionproposalnetworks.*AdvancesinNeuralInformationProcessingSystems*,28.-**代码实现**:-**官方实现(Matlab)**:https://github.com/ShaoqingRen/faster_rcnn(原始版本)-**PyTorch实现**:https://github.com/jwyang/faster-rcnn.pytorch(广泛使用,支持训练/测试)-**TensorFlow实现**:https://github.com/endernewton/tf-faster-rcnn-**复现说明**:这些代码库提供了完整的训练和测试流程,包括在PASCALVOC、COCO等数据集上的预训练模型。PyTorch版本更易复现,文档详细。###2.**优化速度/精度的可复现改进论文**####(1)**Light-HeadR-CNN(2017)**-**论文**:Li,Z.,etal.(2017).Light-headR-CNN:Indefenseoftwo-stageobjectdetector.*IEEEConferenceonComputerVisionandPatternRecognition(CVPR)*.-**贡献**:大幅减少FasterR-CNN头部计算量。使用轻量级R-CNN子网络(如1个全连接层)替代重型全连接层,速度提升至102FPS(ResNet-101),精度保持。-**代码**:https://github.com/zengarden/light_head_rcnn(PyTorch)-**复现性**:提供COCO训练脚本和预训练模型,易于复现实时性能。####(2)**CascadeR-CNN(2018)**-**论文**:Cai,Z.,&Vasconcelos,N.(2018).CascadeR-CNN:Delvingintohighqualityobjectdetection.*IEEEConferenceonComputerVisionandPatternRecognition(CVPR)*.-**贡献**:通过级联多个R-CNN检测器逐步优化边界框,显著提升精度(尤其对小目标)。虽非纯速度优化,但提供了高效实现。-**代码**:https://github.com/zhaoweicai/cascade-rcnn(Caffe,官方)或https://github.com/DetectionTeamUCAS/Cascade-RCNN-Tensorflow(TensorFlow)-**复现性**:官方Caffe代码完整,但需配置环境;TensorFlow版本更易使用。####(3)**LibraR-CNN(2019)**-**论文**:Pang,J.,etal.(2019).LibraR-CNN:Towardsbalancedlearningforobjectdetection.*IEEEConferenceonComputerVisionandPatternRecognition(CVPR)*.-**贡献**:从数据、特征和损失三个维度平衡FasterR-CNN的学习过程,提升精度(+2.3%mAP)且不显著增加计算量。-**代码**:https://github.com/open-mmlab/mmdetection/tree/master/configs/libra_rcnn(集成在MMDetection中)-**复现性**:基于PyTorch的MMDetection框架,一键训练/测试。###3.**结合RPN的单阶段实时检测器(更高FPS)**虽然单阶段检测器(如YOLO、SSD)不使用显式RPN,但部分工作将RPN思想融入单阶段框架以实现实时检测:####(1)**RefineDet(2018)**-**论文**:Zhang,S.,etal.(2018).Single-shotrefinementneuralnetworkforobjectdetection.*IEEEConferenceonComputerVisionandPatternRecognition(CVPR)*.-**贡献**:结合两阶段(RPN-like)和单阶段设计:先通过锚点精炼模块(类似RPN)过滤负样本,再传输特征到检测模块。在VOC上达到41.8%mAP/40FPS。-**代码**:https://github.com/sfzhang15/RefineDet(Caffe)-**复现性**:官方Caffe实现,提供预训练模型。####(2)**FoveaBox(2019)**-**论文**:Kong,T.,etal.(2019).FoveaBox:Beyondanchor-basedobjectdetection.*IEEETransactionsonImageProcessing*.-**贡献**:无锚点(anchor-free)检测器,但保留RPN的“区域提议”思想(通过特征图预测中心区域)。速度达50FPS(ResNet-50)。-**代码**:https://github.com/taokong/FoveaBox(PyTorch)-**复现性**:代码清晰,支持COCO训练。###4.**最新可复现RPN改进工作(2020-2023)**####(1)**DynamicR-CNN(2020)**-**论文**:Zhang,H.,etal.(2020).DynamicR-CNN:Towardshighqualityobjectdetectionviadynamictraining.*EuropeanConferenceonComputerVision(ECCV)*.-**贡献**:动态调整RPN的IoU阈值和回归损失参数,适应训练过程,提升精度(+1.6%mAP)。-**代码**:https://github.com/hkzhang95/DynamicRCNN(PyTorch)-**复现性**:基于MMDetection,易于集成。####(2)**SparseR-CNN(2021)**-**论文**:Sun,P.,etal.(2021).SparseR-CNN:End-to-endobjectdetectionwithlearnableproposals.*IEEEConferenceonComputerVisionandPatternRecognition(CVPR)*.-**贡献**:用固定数量的可学习提议框(learnableproposalboxes)替代RPN,减少计算量,实现端到端训练。速度达40FPS(ResNet-50)。-**代码**:https://github.com/PeizeSun/SparseR-CNN(PyTorch)-**复现性**:官方代码完整,提供COCO预训练模型。###总结推荐-**优先复现**:-**Light-HeadR-CNN**:速度最快(>100FPS),代码易用[^1]。-**SparseR-CNN**:创新RPN替代方案,平衡速度与精度[^2]。-**基础实现**:从**FasterR-CNNPyTorch版**开始,理解RPN机制[^3]。-**高级优化**:**DynamicR-CNN**或**LibraR-CNN**提升精度而不牺牲太多速度[^4][^5]。所有推荐论文均提供开源代码(PyTorch为主),确保可复现性。实验时注意硬件差异(如GPU型号)可能影响FPS。§§相关问题§§1.如何在自定义数据集上复现FasterR-CNN?2.Light-HeadR-CNN是如何减少计算量的?3.无锚点(anchor-free)检测器(如FoveaBox)与RPN有何区别?</think>以下是针对您需求的精选论文列表,这些论文不仅与 Faster R-CNN 核心思想相关,还具备良好的可复现性(均提供开源代码),并专注于实时目标检测和区域提议网络(RPN)的优化: --- ### 一、核心可复现改进论文 1. **Light-Head R-CNN (CVPR 2018)** - **标题**:Light-Head R-CNN: In Defense of Two-Stage Object Detector - **代码**:[GitHub - zengarden/light_head_rcnn](https://github.com/zengarden/light_head_rcnn) - **贡献**: - 将 Faster R-CNN 的检测头轻量化,用全局卷积网络(GCN)替代全连接层 - 速度提升至 **102 FPS**(ResNet-101)同时保持高精度(COCO mAP 41.5%) - RPN 与检测头共享特征,减少重复计算[^1] 2. **Faster R-CNN with FPN (CVPR 2017)** - **标题**:Feature Pyramid Networks for Object Detection - **代码**:[GitHub - facebookresearch/detectron2](https://github.com/facebookresearch/detectron2) - **贡献**: - 通过多尺度特征金字塔增强 RPN 对小目标的检测能力 - 在 COCO 数据集上 mAP 提升 **8.3%** - 官方实现支持 PyTorch,包含完整训练脚本[^2] 3. **Cascade R-CNN (CVPR 2018)** - **标题**:Cascade R-CNN: Delving into High Quality Object Detection - **代码**:[GitHub - zhaoweicai/cascade-rcnn](https://github.com/zhaoweicai/cascade-rcnn) - **贡献**: - 级联多个 R-CNN 检测器逐步优化 RPN 生成的候选框 - 在高速推理(20 FPS)下将误检率降低 **30%** - 提供 Caffe 和 PyTorch 版本[^3] --- ### 二、实时性优化方案 4. **ThunderNet (ICCV 2019)** - **标题**:ThunderNet: Towards Real-Time Generic Object Detection - **代码**:[GitHub - ouyanghuiyu/Thundernet_Pytorch](https://github.com/ouyanghuiyu/Thundernet_Pytorch) - **贡献**: - 专为移动端设计的轻量级 RPN + R-CNN 架构 - 在 ARM 芯片上达到 **24.1 FPS**(mAP 32.8% on COCO) - 完整训练/推理代码和预训练模型[^4] 5. **TridentNet (ICCV 2019)** - **标题**:Scale-Aware Trident Networks for Object Detection - **代码**:[GitHub - TuSimple/simpledet](https://github.com/TuSimple/simpledet) - **贡献**: - 通过并行多分支卷积增强 RPN 的多尺度鲁棒性 - 速度 11.8 FPS(ResNet-101),COCO mAP **48.4%** - 基于 MXNet 的工业级实现[^5] --- ### 三、RPN 结构创新 6. **GA-RPN (CVPR 2019)** - **标题**:Region Proposal by Guided Anchoring - **代码**:[GitHub - open-mmlab/mmdetection](https://github.com/open-mmlab/mmdetection) - **贡献**: - 用语义特征引导 RPN 的锚点生成,减少冗余计算 - 候选框质量提升 **12%**,推理速度提升 **1.5×** - 集成于 MMDetection 框架,支持即插即用[^6] 7. **Sparse R-CNN (CVPR 2021)** - **标题**:Sparse R-CNN: End-to-End Object Detection with Learnable Proposals - **代码**:[GitHub - PeizeSun/SparseR-CNN](https://github.com/PeizeSun/SparseR-CNN) - **贡献**: - 用可学习提议框替代传统 RPN,生成固定数量的高质量候选框 - 在 40 FPS 下达到 COCO mAP **44.5%**(ResNet-50) - PyTorch 实现包含完整训练流程[^7] --- ### 复现关键建议 1. **硬件要求**: - 大部分模型需 GPU(建议 ≥ 8GB 显存),ThunderNet 可在 ARM 设备运行 2. **数据集准备**: - 使用 [COCO](https://cocodataset.org) 或 [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/) 标准化数据集 3. **框架选择**: - 优先选用 PyTorch 实现(MMDetection/detectron2),社区支持完善 > **性能对比**(参考值): > | 模型 | 骨干网络 | FPS | COCO mAP | > |---|---|---|---| > | Faster R-CNN | ResNet-50 | 7.1 | 37.9% | > | Light-Head | Xception | 102 | 37.1% | > | ThunderNet | ShuffleNetV2 | 24.1 | 32.8% | > | Sparse R-CNN | ResNet-50 | 40 | 44.5% | --- ### 开源项目推荐 - **MMDetection**:集成 80+ 检测模型,包含所有 RPN 变种 ```bash pip install mmdet ``` - **Detectron2**:Facebook 官方实现,优化分布式训练 ```python from detectron2 import model_zoo model = model_zoo.get("COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值