Unity基于自定义管线实现风格化草

部署运行你感兴趣的模型镜像

目录

一、简介

二,环境

三 ,实现简要步骤

四,实现过程

        1,准备基本工作

        2,编辑草地网格

2.1 添加几何着色器,绘制草的基本形状

2.2 增加细节与随机朝向

2.3 增加曲面细分着色器,增加草片数量

      3,编辑草的颜色

3.1 设置基本颜色

3.2 添加光影

3.2.1 添加影子               

3.2.2 添加光的影响

        4,来点风

五,参考代码

        GrassShader.shader

        GrassShader.hlsl



一、简介

        本文在Catlike Coding 实现的【Custom SRP 2.5.0】基础上参考了Roystan的文章 【Grass Shader】实现了风格化草的渲染。

        这个风格化草在网上有不少实现案例,本文主要是给出他在该管线下的一种实现参考以及添加多光源的支持

二,环境

        Unity :2022.3.18f1

        CRP Library :14.0.10

        URP基本结构 : Custom SRP 2.5.0

三 ,实现简要步骤

        该风格化草实现主要分为两个部分,第一步是在GPU中通过曲面细分与几何着色器构建草地的网格。第二步便是添加光影效果。

四,实现过程

        1,准备基本工作

                创建GrassShader.hlsl文件添加如下代码          

#ifndef GRASSSHADER_COMMON_INCLUDED
#define GRASSSHADER_COMMON_INCLUDED

UNITY_INSTANCING_BUFFER_START(UnityPerMaterial)

UNITY_INSTANCING_BUFFER_END(UnityPerMaterial)

float rand(float3 co)
{
    return frac(sin(dot(co.xyz, float3(12.9898, 78.233, 53.539))) * 43758.5453);
}

float3x3 AngleAxis3x3(float angle, float3 axis)
{
    float c, s;
    sincos(angle, s, c);

    float t = 1 - c;
    float x = axis.x;
    float y = axis.y;
    float z = axis.z;

    return float3x3(
        t * x * x + c, t * x * y - s * z, t * x * z + s * y,
        t * x * y + s * z, t * y * y + c, t * y * z - s * x,
        t * x * z - s * y, t * y * z + s * x, t * z * z + c
        );
}


float4 vert(float4 vertex : POSITION) : SV_POSITION
{
    return TransformObjectToHClip(vertex);
}


float4 frag(float4 vertex : SV_POSITION, float facing : VFACE) : SV_Target
{
    return float4(1, 1, 1, 1);
}

#endif

                创建GrassShader.shader 添加如下代码

                

Shader "Custom/GrassShader"
{
    Properties
    {

       
    }

    SubShader
    {

        HLSLINCLUDE
        #include "../ShaderLibrary/Common.hlsl"
        #include "../ShaderLibrary/GrassShader.hlsl"
        ENDHLSL

        Pass
        {
            Tags { "LightMode" = "CustomLit" }

            Cull Off

            HLSLPROGRAM
            #pragma vertex vert
            #pragma fragment frag
            #pragma target 4.6
            ENDHLSL
        }


    }
    FallBack "Diffuse"
}

           创建GrassShader对应的材质,之后创建新物体添加Mesh Renderer 将该材质绑定,添加Plane(Mesh Filter) 网格,过程不演示

                完成后,你应该是这个样子

                编辑你的Common.hlsl ,添加如下定义

                

#define UNITY_PI 3.14159265359f
#define UNITY_TWO_PI 6.28318530718f


        2,编辑草地网格

                2.1 添加几何着色器,绘制草的基本形状

                        修改GrassShader.shader,添加如下代码

                       


            #pragma vertex vert
            #pragma geometry geo//新增这行
            #pragma fragment frag

                        修改GrassShader.hlsl ,添加如下代码

                        

struct geometryOutput
{
    float4 pos : SV_POSITION;
};



[maxvertexcount(3)]
void geo(triangle float4 IN[3] : SV_POSITION, inout TriangleStream<geometryOutput> triStream)
{
    float3 pos = IN[0];

    geometryOutput o;

    o.pos = TransformObjectToHClip(pos + float3(0.5, 0, 0));
    triStream.Append(o);

    o.pos = TransformObjectToHClip(pos + float3(-0.5, 0, 0));
    triStream.Append(o);

    o.pos = TransformObjectToHClip(pos + float3(0, 1, 0));
    triStream.Append(o);
}

                这时,你的效果应该是这样的

                

                几何着色器在每个网格上都输出了一个三角形,并在frag中涂成了白色


                2.2 增加细节与随机朝向

                修改GrassShader.shader,添加如下代码

                

    Properties
    {
        _BendRotationRandom("Bend Rotation Random", Range(0, 1)) = 0.2 //转向随机参数     
        _BladeWidth("Blade Width", Float) = 0.05 //草的宽
        _BladeWidthRandom("Blade Width Random", Float) = 0.02
        _BladeHeight("Blade Height", Float) = 0.5 //草的高
        _BladeHeightRandom("Blade Height Random", Float) = 0.3
        _BladeForward("Blade Forward Amount", Float) = 0.38 //草尖位置
        _BladeCurve("Blade Curvature Amount", Range(1, 4)) = 2
    }

                修改GrassShader.hlsl ,添加并修改如下代码

                

UNITY_INSTANCING_BUFFER_START(UnityPerMaterial)
.......


UNITY_DEFINE_INSTANCED_PROP(float, _BendRotationRandom)
UNITY_DEFINE_INSTANCED_PROP(float, _BladeHeight)
UNITY_DEFINE_INSTANCED_PROP(float, _BladeHeightRandom)
UNITY_DEFINE_INSTANCED_PROP(float, _BladeWidth)
UNITY_DEFINE_INSTANCED_PROP(float, _BladeWidthRandom)
UNITY_DEFINE_INSTANCED_PROP(float, _BladeForward)
UNITY_DEFINE_INSTANCED_PROP(float, _BladeCurve)

UNITY_INSTANCING_BUFFER_END(UnityPerMaterial)

#define BLADE_SEGMENTS 3


......

struct geometryOutput
{
    float4 pos : SV_POSITION;
    float3 posWS : VAR_POSITION;
    float2 uv : TEXCOORD0;
};

struct vertexInput
{
    float4 vertex : POSITION;
    float3 normal : NORMAL;
    float4 tangent : TANGENT;
};

struct vertexOutput
{
    float4 vertex : SV_POSITION;
    float3 normal : NORMAL;
    float4 tangent : TANGENT;
};


//调整顶点着色器输出,vertexOutput作为中间变量,后续在曲面细分着色器中需要用到,这里提前设置
vertexOutput vert(vertexInput v)
{
    vertexOutput o;
    o.vertex = v.vertex;
    o.normal = v.normal;
    o.tangent = v.tangent;
    return o;
}

geometryOutput GenerateGrassVertex(float3 vertexPosition, float width, float height, float forward, float2 uv, float3x3 transformMatrix)
{
    float3 tangentPoint = float3(width, forward, height);

    float3 localPosition = vertexPosition + mul(transformMatrix, tangentPoint);

    return VertexOutput(localPosition, uv);
}

[maxvertexcount(BLADE_SEGMENTS * 2 + 1)]
void geo(triangle vertexOutput IN[3] : SV_POSITION, inout TriangleStream<geometryOutput> triStream)
{
    float3 pos = IN[0].vertex;

    // Place in the geometry shader, below the line declaring float3 pos.		
    float3 vNormal = IN[0].normal;
    float4 vTangent = IN[0].tangent;
    float3 vBinormal = cross(vNormal, vTangent) * vTangent.w;
    float height = (rand(pos.zyx) * 2 - 1) * _BladeHeightRandom + _BladeHeight;
    float width = (rand(pos.xzy) * 2 - 1) * _BladeWidthRandom + _BladeWidth;


    // Add below the lines declaring the three vectors.
    float3x3 tangentToLocal = float3x3(
        vTangent.x, vBinormal.x, vNormal.x,
        vTangent.y, vBinormal.y, vNormal.y,
        vTangent.z, vBinormal.z, vNormal.z
        );

    float3x3 facingRotationMatrix = AngleAxis3x3(rand(pos) * UNITY_TWO_PI, float3(0, 0, 1));

    float3x3 bendRotationMatrix = AngleAxis3x3(rand(pos.zzx) * _BendRotationRandom * UNITY_PI * 0.5, float3(-1, 0, 0));

    float3x3 transformationMatrix = mul(mul(tangentToLocal, facingRotationMatrix), bendRotationMatrix);

    float3x3 transformationMatrixFacing = mul(tangentToLocal, facingRotationMatrix);

    float forward = rand(pos.yyz) * _BladeForward;

    for (int i = 0; i < BLADE_SEGMENTS; i++)
    {
        float t = i / (float)BLADE_SEGMENTS;
        float segmentHeight = height * t;
        float segmentWidth = width * (1 - t);

        float3x3 transformMatrix = i == 0 ? transformationMatrixFacing : transformationMatrix;

        float segmentForward = pow(t, _BladeCurve) * forward;

        triStream.Append(GenerateGrassVertex(pos, segmentWidth, segmentHeight, segmentForward, float2(0, t), transformMatrix));
        triStream.Append(GenerateGrassVertex(pos, -segmentWidth, segmentHeight, segmentForward, float2(1, t), transformMatrix));

    }
    triStream.Append(GenerateGrassVertex(pos, 0, height, forward, float2(0.5, 1), transformationMatrix));

}

                这个时候你的草应该是这样,想要细分形状的话,研究这段代码的作用即可

       


        2.3 增加曲面细分着色器,增加草片数量

        

        修改GrassShader.shader,添加如下代码

        

    Properties
    {
......

         _TessellationUniform("Tessellation Uniform", Range(1, 64)) = 1
    }

......

            HLSLPROGRAM
            #pragma vertex vert
            #pragma hull hull //这行
            #pragma domain domain //这行
            #pragma geometry geo
            #pragma fragment frag
            #pragma target 4.6
            ENDHLSL
......

        修改GrassShader.hlsl,添加如下代码

        

UNITY_INSTANCING_BUFFER_START(UnityPerMaterial)

........

UNITY_DEFINE_INSTANCED_PROP(float, _TessellationUniform)

UNITY_INSTANCING_BUFFER_END(UnityPerMaterial)


........

........

struct TessellationFactors
{
    float edge[3] : SV_TessFactor;
    float inside : SV_InsideTessFactor;
};

........



TessellationFactors patchConstantFunction(InputPatch<vertexInput, 3> patch)
{
    TessellationFactors f;
    f.edge[0] = _TessellationUniform;
    f.edge[1] = _TessellationUniform;
    f.edge[2] = _TessellationUniform;
    f.inside = _TessellationUniform;
    return f;
}

[domain("tri")]
[outputcontrolpoints(3)]
[outputtopology("triangle_cw")]
[partitioning("integer")]
[patchconstantfunc("patchConstantFunction")]
vertexInput hull(InputPatch<vertexInput, 3> patch, uint id : SV_OutputControlPointID)
{
    return patch[id];
}

vertexOutput tessVert(vertexInput v)
{
    vertexOutput o;
    // Note that the vertex is NOT transformed to clip
    // space here; this is done in the grass geometry shader.
    o.vertex = v.vertex;
    o.normal = v.normal;
    o.tangent = v.tangent;
    return o;
}

[domain("tri")]
vertexOutput domain(TessellationFactors factors, OutputPatch<vertexInput, 3> patch, float3 barycentricCoordinates : SV_DomainLocation)
{
    vertexInput v;

#define MY_DOMAIN_PROGRAM_INTERPOLATE(fieldName) v.fieldName = \
		        patch[0].fieldName * barycentricCoordinates.x + \
		        patch[1].fieldName * barycentricCoordinates.y + \
		        patch[2].fieldName * barycentricCoordinates.z;

    MY_DOMAIN_PROGRAM_INTERPOLATE(vertex)
        MY_DOMAIN_PROGRAM_INTERPOLATE(normal)
        MY_DOMAIN_PROGRAM_INTERPOLATE(tangent)

        return tessVert(v);
}
.......

                这个时候你的草应该长这样

                

                参数参考:

                


      3,编辑草的颜色

                3.1 设置基本颜色

                修改GrassShader.shader,添加如下代码

                

    Properties
    {

.......

         _TopColor("Top Color", Color) = (1,1,1,1)
        _BottomColor("Bottom Color", Color) = (1,1,1,1)
    }

                 修改GrassShader.hlsl,修改frag,颜色只是普通的线性插值

.......

UNITY_INSTANCING_BUFFER_START(UnityPerMaterial)

.......

UNITY_DEFINE_INSTANCED_PROP(float4, _BottomColor)
UNITY_DEFINE_INSTANCED_PROP(float4, _TopColor)

UNITY_INSTANCING_BUFFER_END(UnityPerMaterial)

........



float4 frag(geometryOutput i, float facing : VFACE) : SV_Target
{
    float4 base = lerp(_BottomColor, _TopColor, i.uv.y);
    return base;
}

                

              调整好颜色后,这个时候你的草应该是这样

                底部空空的不好看,再增加个Plane

                

                到这一步这个草地已经基本成型了,接下来的步骤基本算是效果上的优化


        3.2 添加光影

                3.2.1 添加影子

                修改GrassShader.shader,添加如下代码

                

SubShader
{
.........


        Pass 
        {
            Tags {
                "LightMode" = "ShadowCaster"
            }

            ColorMask 0

            HLSLPROGRAM
            #pragma vertex vert
            #pragma hull hull
            #pragma domain domain
            #pragma geometry geo
            #pragma fragment fragShadow
            #pragma shader_feature _ _SHADOWS_CLIP _SHADOWS_DITHER
            #pragma multi_compile _ LOD_FADE_CROSSFADE
            #pragma multi_compile_instancing
            #pragma target 4.6


            void fragShadow(geometryOutput i)
            {
                UNITY_SETUP_INSTANCE_ID(i);
                InputConfig config = GetInputConfig(i.pos, i.uv);
                ClipLOD(config.fragment, unity_LODFade.x);

#if defined(_SHADOWS_CLIP)
                clip(base.a - GetCutoff(config));
#elif defined(_SHADOWS_DITHER)
                float dither = InterleavedGradientNoise(input.positionCS_SS.xy, 0);
                clip(base.a - dither);
#endif
            }

            ENDHLSL
        }

}

                修改GrassShader.hlsl,添加一些引用

                

#include "Surface.hlsl"
#include "Shadows.hlsl"
#include "LitInput.hlsl"

                如果代码没问题,你应该能看到草片投射到别的物体上的阴影

                


               
                3.2.2 添加光的影响

                这部分自由发挥空间很大,这边给出我自己的实现方案仅作参考

                修改GrassShader.shader,添加如下代码

                

    Properties
    {

........
        _TranslucentGain("Translucent Gain", Range(0,1)) = 0.5
       [Toggle(_RECEIVE_SHADOWS)] _ReceiveShadows("Receive Shadows", Float) = 1
    }

........

        Pass
        {
            Tags { "LightMode" = "CustomLit" }

            Cull Off

            HLSLPROGRAM
            //标记接受阴影,在frag计算颜色的时候会用到
            #pragma shader_feature _RECEIVE_SHADOWS
            #pragma multi_compile _ _OTHER_PCF3 _OTHER_PCF5 _OTHER_PCF7
            #pragma multi_compile _ _SHADOW_MASK_ALWAYS _SHADOW_MASK_DISTANCE
            #pragma multi_compile _ _CASCADE_BLEND_SOFT _CASCADE_BLEND_DITHER
            #pragma multi_compile _ _DIRECTIONAL_PCF3 _DIRECTIONAL_PCF5 _DIRECTIONAL_PCF7
.......
            ENDHLSL
        }

                修改GrassShader.hlsl,添加一些引用

                

.......

#include "Surface.hlsl"
#include "Shadows.hlsl"
#include "Light.hlsl"
#include "BRDF.hlsl"
#include "GI.hlsl"
#include "Lighting.hlsl"
#include "LitInput.hlsl"

.......



UNITY_INSTANCING_BUFFER_START(UnityPerMaterial)

.......

UNITY_DEFINE_INSTANCED_PROP(float, _TranslucentGain)

UNITY_INSTANCING_BUFFER_END(UnityPerMaterial)


.......

struct geometryOutput
{
.......
    float3 normalWS : VAR_NORMAL;
};



//添加法线向量
geometryOutput VertexOutput(float3 pos, float2 uv, float3 normal)
{
.......
    o.normalWS = TransformObjectToWorldNormal(normal);
    return o;
}


geometryOutput GenerateGrassVertex(float3 vertexPosition, float width, float height, float forward, float2 uv, float3x3 transformMatrix)
{
.......

    float3 tangentNormal = normalize(float3(0, -1, forward));
    float3 localNormal = mul(transformMatrix, tangentNormal);

    return VertexOutput(localPosition, uv, localNormal);
}



.......


//计算各个光源的影响,这个部分直接参考的LitPass的代码编写

float3 GetGLighting(Surface surfaceWS, BRDF brdf, GI gi)
{
    ShadowData shadowData = GetShadowData(surfaceWS);
    shadowData.shadowMask = gi.shadowMask;
    float3 color = IndirectBRDF(surfaceWS, brdf, gi.diffuse, gi.specular);

    for (int i = 0; i < GetDirectionalLightCount(); i++) {
        Light light = GetDirectionalLight(i, surfaceWS, shadowData);
        if (RenderingLayersOverlap(surfaceWS, light)) {
            float NdotL = saturate(saturate(dot(surfaceWS.normal, light.direction)) + _TranslucentGain) * light.attenuation;
            color += NdotL * light.color;
        }
    }

#if defined(_LIGHTS_PER_OBJECT)
    for (int j = 0; j < min(unity_LightData.y, 8); j++) {
        int lightIndex = unity_LightIndices[(uint)j / 4][(uint)j % 4];
        Light light = GetOtherLight(lightIndex, surfaceWS, shadowData);
        if (RenderingLayersOverlap(surfaceWS, light)) {
            float NdotL = saturate(saturate(dot(surfaceWS.normal, light.direction)) + _TranslucentGain) * light.attenuation;
            color += NdotL * light.color;
        }
    }
#else
    for (int j = 0; j < GetOtherLightCount(); j++) {
        Light light = GetOtherLight(j, surfaceWS, shadowData);
        if (RenderingLayersOverlap(surfaceWS, light)) {
            float NdotL = saturate(saturate(dot(surfaceWS.normal, light.direction)) + _TranslucentGain) * light.attenuation;
            color += NdotL * light.color;
        }
    }
#endif

    return color;
}


float4 frag(geometryOutput i, float facing : VFACE) : SV_Target
{
    UNITY_SETUP_INSTANCE_ID(i);
    InputConfig config = GetInputConfig(i.pos, i.uv);
    ClipLOD(config.fragment, unity_LODFade.x);

    float4 base = lerp(_BottomColor, _TopColor, i.uv.y);
    float3 normal = facing > 0 ? i.normalWS : -i.normalWS;

    Surface surface;
    surface.position = i.posWS;
    surface.normal = normalize(normal);
    surface.interpolatedNormal = surface.normal;
    surface.viewDirection = normalize(_WorldSpaceCameraPos - i.posWS);
    surface.depth = -TransformWorldToView(i.posWS).z;
    surface.color = base.rgb;
    surface.alpha = base.a;
    surface.metallic = 0;
    surface.occlusion = 1;
    surface.smoothness = 0;
    surface.fresnelStrength = 1;
    surface.dither = 1;
    surface.renderingLayerMask = asuint(unity_RenderingLayer.x);
    BRDF brdf = GetBRDF(surface);
    GI gi = GetGI(GI_FRAGMENT_DATA(i), surface, brdf);


    float4 lightIntensity = float4(GetGLighting(surface, brdf, gi),1);
    float4 col = lerp(_BottomColor, _TopColor * lightIntensity, i.uv.y);
    return col;
}

                如果代码没有问题的话,你应该会得到这样一个效果

        参数参考:


        4,来点风

                预先准备工作,添加时间变量_TimeDelta

                新增SetupBeForeLightPass.cs 文件,添加如下代码

        

using UnityEngine.Experimental.Rendering.RenderGraphModule;
using UnityEngine.Rendering;
using UnityEngine;
using UnityEngine.Experimental.Rendering;

public class SetupBeForeLightPass
{
	static readonly ProfilingSampler sampler = new("SetupBeForeLight");

	static int
	TimeDelta = Shader.PropertyToID("_TimeDelta");

	void Render(RenderGraphContext context) 
	{
		CommandBuffer buffer = context.cmd;
		buffer.SetGlobalFloat(TimeDelta, Time.time);
		context.renderContext.ExecuteCommandBuffer(context.cmd);
		context.cmd.Clear();
	}

	public static void Record(
		RenderGraph renderGraph)
	{

		using RenderGraphBuilder builder =
			renderGraph.AddRenderPass(sampler.name, out SetupBeForeLightPass pass, sampler);

		builder.AllowPassCulling(false);
		builder.SetRenderFunc<SetupBeForeLightPass>(
			static (pass, context) => pass.Render(context));
	}
}

                        修改CameraRenderer.cs 添加如下代码

                

.......
public void Render(RenderGraph renderGraph, ScriptableRenderContext context, Camera camera, CameraBufferSettings bufferSettings, bool useLightsPerObject, ShadowSettings shadowSettings, PostFXSettings postFXSettings,int colorLUTResolution)
{

.......
		using (renderGraph.RecordAndExecute(renderGraphParameters))
        {
			// Add passes here.
			using var _ = new RenderGraphProfilingScope(renderGraph, cameraSampler);

			SetupBeForeLightPass.Record(renderGraph);
.......
        }


}

.......

                修改 Common.hlsl 添加变量

......

float _TimeDelta;

......

                从【Grass Shader】拿取风的贴图

        修改GrassShader.shader

        

    Properties
    {
.......
        _WindDistortionMap("Wind Distortion Map", 2D) = "white" {}
        _WindFrequency("Wind Frequency", Vector) = (0.05, 0.05, 0, 0)
        _WindStrength("Wind Strength", Float) = 1
.......

    }

        修改GrassShader.hlsl

.......

UNITY_INSTANCING_BUFFER_START(UnityPerMaterial)

.......
UNITY_DEFINE_INSTANCED_PROP(float2, _WindFrequency)
UNITY_DEFINE_INSTANCED_PROP(float, _WindStrength)

UNITY_INSTANCING_BUFFER_END(UnityPerMaterial)

TEXTURE2D(_WindDistortionMap);
SAMPLER(sampler_WindDistortionMap);
float4 _WindDistortionMap_TexelSize;

#define BLADE_SEGMENTS 3

.......

void geo(triangle vertexOutput IN[3] : SV_POSITION, inout TriangleStream<geometryOutput> triStream)
{
.......

    float2 uv = pos.xz * _WindDistortionMap_TexelSize.xy + _WindDistortionMap_TexelSize.zw + _WindFrequency * _TimeDelta;

    float4 _WindD = SAMPLE_TEXTURE2D_LOD(_WindDistortionMap, sampler_WindDistortionMap, uv, 0);

    float2 windSample = (_WindD.xy * 2 - 1) * _WindStrength;

    float3 wind = normalize(float3(windSample.x, windSample.y, 0));
    float3x3 windRotation = AngleAxis3x3(UNITY_PI * windSample, wind);

.......

    float3x3 transformationMatrix = mul(mul(mul(tangentToLocal, windRotation), facingRotationMatrix), bendRotationMatrix);

.......


}

如果代码没问题的话,效果应该是这样子

运行的时候应该是有运动的

 参数参考:


五,参考代码

        GrassShader.shader

Shader "Custom/GrassShader"
{
    Properties
    {
        _TopColor("Top Color", Color) = (1,1,1,1)
        _BottomColor("Bottom Color", Color) = (1,1,1,1)
        _TranslucentGain("Translucent Gain", Range(0,1)) = 0.5
        _BendRotationRandom("Bend Rotation Random", Range(0, 1)) = 0.2
        _BladeWidth("Blade Width", Float) = 0.05
        _BladeWidthRandom("Blade Width Random", Float) = 0.02
        _BladeHeight("Blade Height", Float) = 0.5
        _BladeHeightRandom("Blade Height Random", Float) = 0.3
        _TessellationUniform("Tessellation Uniform", Range(1, 64)) = 1
        _WindDistortionMap("Wind Distortion Map", 2D) = "white" {}
        _WindFrequency("Wind Frequency", Vector) = (0.05, 0.05, 0, 0)
        _WindStrength("Wind Strength", Float) = 1
        _BladeForward("Blade Forward Amount", Float) = 0.38
        _BladeCurve("Blade Curvature Amount", Range(1, 4)) = 2
        [Toggle(_RECEIVE_SHADOWS)] _ReceiveShadows("Receive Shadows", Float) = 1
    }

    SubShader
    {

        HLSLINCLUDE
        #include "../ShaderLibrary/Common.hlsl"
        #include "../ShaderLibrary/GrassShader.hlsl"
        ENDHLSL

        Pass
        {
            Tags { "LightMode" = "CustomLit" }

            Cull Off

            HLSLPROGRAM
            #pragma shader_feature _RECEIVE_SHADOWS
            #pragma multi_compile _ _OTHER_PCF3 _OTHER_PCF5 _OTHER_PCF7
            #pragma multi_compile _ _SHADOW_MASK_ALWAYS _SHADOW_MASK_DISTANCE
            #pragma multi_compile _ _CASCADE_BLEND_SOFT _CASCADE_BLEND_DITHER
            #pragma multi_compile _ _DIRECTIONAL_PCF3 _DIRECTIONAL_PCF5 _DIRECTIONAL_PCF7
            #pragma vertex vert
            #pragma hull hull
            #pragma domain domain
            #pragma geometry geo
            #pragma fragment frag
            #pragma target 4.6
            ENDHLSL
        }

        Pass 
        {
            Tags {
                "LightMode" = "ShadowCaster"
            }

            ColorMask 0

            HLSLPROGRAM
            #pragma vertex vert
            #pragma hull hull
            #pragma domain domain
            #pragma geometry geo
            #pragma fragment fragShadow
            #pragma shader_feature _ _SHADOWS_CLIP _SHADOWS_DITHER
            #pragma multi_compile _ LOD_FADE_CROSSFADE
            #pragma multi_compile_instancing
            #pragma target 4.6


            void fragShadow(geometryOutput i)
            {
                UNITY_SETUP_INSTANCE_ID(i);
                InputConfig config = GetInputConfig(i.pos, i.uv);
                ClipLOD(config.fragment, unity_LODFade.x);

#if defined(_SHADOWS_CLIP)
                clip(base.a - GetCutoff(config));
#elif defined(_SHADOWS_DITHER)
                float dither = InterleavedGradientNoise(input.positionCS_SS.xy, 0);
                clip(base.a - dither);
#endif
            }

            ENDHLSL
        }


    }
    FallBack "Diffuse"
}

        GrassShader.hlsl

#ifndef GRASSSHADER_COMMON_INCLUDED
#define GRASSSHADER_COMMON_INCLUDED

#include "Surface.hlsl"
#include "Shadows.hlsl"
#include "Light.hlsl"
#include "BRDF.hlsl"
#include "GI.hlsl"
#include "Lighting.hlsl"
#include "LitInput.hlsl"

UNITY_INSTANCING_BUFFER_START(UnityPerMaterial)
UNITY_DEFINE_INSTANCED_PROP(float4, _BottomColor)
UNITY_DEFINE_INSTANCED_PROP(float4, _TopColor)
UNITY_DEFINE_INSTANCED_PROP(float, _BendRotationRandom)
UNITY_DEFINE_INSTANCED_PROP(float, _BladeHeight)
UNITY_DEFINE_INSTANCED_PROP(float, _BladeHeightRandom)
UNITY_DEFINE_INSTANCED_PROP(float, _BladeWidth)
UNITY_DEFINE_INSTANCED_PROP(float, _BladeWidthRandom)
UNITY_DEFINE_INSTANCED_PROP(float, _TessellationUniform)
UNITY_DEFINE_INSTANCED_PROP(float2, _WindFrequency)
UNITY_DEFINE_INSTANCED_PROP(float, _WindStrength)
UNITY_DEFINE_INSTANCED_PROP(float, _BladeForward)
UNITY_DEFINE_INSTANCED_PROP(float, _BladeCurve)
UNITY_DEFINE_INSTANCED_PROP(float, _TranslucentGain)

UNITY_INSTANCING_BUFFER_END(UnityPerMaterial)

#define BLADE_SEGMENTS 3

TEXTURE2D(_WindDistortionMap);
SAMPLER(sampler_WindDistortionMap);
float4 _WindDistortionMap_TexelSize;

float rand(float3 co)
{
    return frac(sin(dot(co.xyz, float3(12.9898, 78.233, 53.539))) * 43758.5453);
}

float3x3 AngleAxis3x3(float angle, float3 axis)
{
    float c, s;
    sincos(angle, s, c);

    float t = 1 - c;
    float x = axis.x;
    float y = axis.y;
    float z = axis.z;

    return float3x3(
        t * x * x + c, t * x * y - s * z, t * x * z + s * y,
        t * x * y + s * z, t * y * y + c, t * y * z - s * x,
        t * x * z - s * y, t * y * z + s * x, t * z * z + c
        );
}

struct vertexInput
{
    float4 vertex : POSITION;
    float3 normal : NORMAL;
    float4 tangent : TANGENT;
};

struct vertexOutput
{
    float4 vertex : SV_POSITION;
    float3 normal : NORMAL;
    float4 tangent : TANGENT;
};

struct geometryOutput
{
    float4 pos : SV_POSITION;
    float3 posWS : VAR_POSITION;
    float2 uv : TEXCOORD0;
    float3 normalWS : VAR_NORMAL;
};

struct TessellationFactors
{
    float edge[3] : SV_TessFactor;
    float inside : SV_InsideTessFactor;
};

vertexInput vert(vertexInput v)
{
    return v;
}

TessellationFactors patchConstantFunction(InputPatch<vertexInput, 3> patch)
{
    TessellationFactors f;
    f.edge[0] = _TessellationUniform;
    f.edge[1] = _TessellationUniform;
    f.edge[2] = _TessellationUniform;
    f.inside = _TessellationUniform;
    return f;
}

[domain("tri")]
[outputcontrolpoints(3)]
[outputtopology("triangle_cw")]
[partitioning("integer")]
[patchconstantfunc("patchConstantFunction")]
vertexInput hull(InputPatch<vertexInput, 3> patch, uint id : SV_OutputControlPointID)
{
    return patch[id];
}

vertexOutput tessVert(vertexInput v)
{
    vertexOutput o;
    // Note that the vertex is NOT transformed to clip
    // space here; this is done in the grass geometry shader.
    o.vertex = v.vertex;
    o.normal = v.normal;
    o.tangent = v.tangent;
    return o;
}

[domain("tri")]
vertexOutput domain(TessellationFactors factors, OutputPatch<vertexInput, 3> patch, float3 barycentricCoordinates : SV_DomainLocation)
{
    vertexInput v;

#define MY_DOMAIN_PROGRAM_INTERPOLATE(fieldName) v.fieldName = \
		        patch[0].fieldName * barycentricCoordinates.x + \
		        patch[1].fieldName * barycentricCoordinates.y + \
		        patch[2].fieldName * barycentricCoordinates.z;

    MY_DOMAIN_PROGRAM_INTERPOLATE(vertex)
        MY_DOMAIN_PROGRAM_INTERPOLATE(normal)
        MY_DOMAIN_PROGRAM_INTERPOLATE(tangent)

        return tessVert(v);
}

geometryOutput VertexOutput(float3 pos, float2 uv,float3 normal)
{
    geometryOutput o;
    o.pos = TransformObjectToHClip(pos);
    o.posWS = TransformObjectToWorld(pos);
    o.uv = uv;
    o.normalWS = TransformObjectToWorldNormal(normal);
    return o;
}

geometryOutput GenerateGrassVertex(float3 vertexPosition, float width, float height, float forward, float2 uv, float3x3 transformMatrix)
{
    float3 tangentPoint = float3(width, forward, height);

    float3 localPosition = vertexPosition + mul(transformMatrix, tangentPoint);

    float3 tangentNormal = normalize(float3(0, -1, forward));
    float3 localNormal = mul(transformMatrix, tangentNormal);

    return VertexOutput(localPosition, uv, localNormal);
}

[maxvertexcount(BLADE_SEGMENTS * 2 + 1)]
void geo(triangle vertexOutput IN[3], inout TriangleStream<geometryOutput> triStream)
{

    float3 pos = IN[0].vertex;

    // Place in the geometry shader, below the line declaring float3 pos.		
    float3 vNormal = IN[0].normal;
    float4 vTangent = IN[0].tangent;
    float3 vBinormal = cross(vNormal, vTangent) * vTangent.w;
    float height = (rand(pos.zyx) * 2 - 1) * _BladeHeightRandom + _BladeHeight;
    float width = (rand(pos.xzy) * 2 - 1) * _BladeWidthRandom + _BladeWidth;

    float2 uv = pos.xz * _WindDistortionMap_TexelSize.xy + _WindDistortionMap_TexelSize.zw + _WindFrequency * _TimeDelta;

    float4 _WindD = SAMPLE_TEXTURE2D_LOD(_WindDistortionMap, sampler_WindDistortionMap, uv, 0);

    float2 windSample = (_WindD.xy * 2 - 1) * _WindStrength;

    float3 wind = normalize(float3(windSample.x, windSample.y, 0));
    float3x3 windRotation = AngleAxis3x3(UNITY_PI * windSample, wind);

    // Add below the lines declaring the three vectors.
    float3x3 tangentToLocal = float3x3(
        vTangent.x, vBinormal.x, vNormal.x,
        vTangent.y, vBinormal.y, vNormal.y,
        vTangent.z, vBinormal.z, vNormal.z
        );

    float3x3 facingRotationMatrix = AngleAxis3x3(rand(pos) * UNITY_TWO_PI, float3(0, 0, 1));

    float3x3 bendRotationMatrix = AngleAxis3x3(rand(pos.zzx) * _BendRotationRandom * UNITY_PI * 0.5, float3(-1, 0, 0));

    float3x3 transformationMatrix = mul(mul(mul(tangentToLocal, windRotation), facingRotationMatrix), bendRotationMatrix);

    float3x3 transformationMatrixFacing = mul(tangentToLocal, facingRotationMatrix);

    float forward = rand(pos.yyz) * _BladeForward;

    for (int i = 0; i < BLADE_SEGMENTS; i++)
    {
        float t = i / (float)BLADE_SEGMENTS;
        float segmentHeight = height * t;
        float segmentWidth = width * (1 - t);

        float3x3 transformMatrix = i == 0 ? transformationMatrixFacing : transformationMatrix;

        float segmentForward = pow(t, _BladeCurve) * forward;

        triStream.Append(GenerateGrassVertex(pos, segmentWidth, segmentHeight, segmentForward, float2(0, t), transformMatrix));
        triStream.Append(GenerateGrassVertex(pos, -segmentWidth, segmentHeight, segmentForward, float2(1, t), transformMatrix));

    }
    triStream.Append(GenerateGrassVertex(pos, 0, height, forward, float2(0.5, 1), transformationMatrix));

}


float3 GetGLighting(Surface surfaceWS, BRDF brdf, GI gi)
{
    ShadowData shadowData = GetShadowData(surfaceWS);
    shadowData.shadowMask = gi.shadowMask;
    float3 color = IndirectBRDF(surfaceWS, brdf, gi.diffuse, gi.specular);

    for (int i = 0; i < GetDirectionalLightCount(); i++) {
        Light light = GetDirectionalLight(i, surfaceWS, shadowData);
        if (RenderingLayersOverlap(surfaceWS, light)) {
            float NdotL = saturate(saturate(dot(surfaceWS.normal, light.direction)) + _TranslucentGain) * light.attenuation;
            color += NdotL * light.color;
        }
    }

#if defined(_LIGHTS_PER_OBJECT)
    for (int j = 0; j < min(unity_LightData.y, 8); j++) {
        int lightIndex = unity_LightIndices[(uint)j / 4][(uint)j % 4];
        Light light = GetOtherLight(lightIndex, surfaceWS, shadowData);
        if (RenderingLayersOverlap(surfaceWS, light)) {
            float NdotL = saturate(saturate(dot(surfaceWS.normal, light.direction)) + _TranslucentGain) * light.attenuation;
            color += NdotL * light.color;
        }
    }
#else
    for (int j = 0; j < GetOtherLightCount(); j++) {
        Light light = GetOtherLight(j, surfaceWS, shadowData);
        if (RenderingLayersOverlap(surfaceWS, light)) {
            float NdotL = saturate(saturate(dot(surfaceWS.normal, light.direction)) + _TranslucentGain) * light.attenuation;
            color += NdotL * light.color;
        }
    }
#endif

    return color;
}

float4 frag(geometryOutput i, float facing : VFACE) : SV_Target
{
    UNITY_SETUP_INSTANCE_ID(i);
    InputConfig config = GetInputConfig(i.pos, i.uv);
    ClipLOD(config.fragment, unity_LODFade.x);

    float4 base = lerp(_BottomColor, _TopColor, i.uv.y);
    float3 normal = facing > 0 ? i.normalWS : -i.normalWS;

    Surface surface;
    surface.position = i.posWS;
    surface.normal = normalize(normal);
    surface.interpolatedNormal = surface.normal;
    surface.viewDirection = normalize(_WorldSpaceCameraPos - i.posWS);
    surface.depth = -TransformWorldToView(i.posWS).z;
    surface.color = base.rgb;
    surface.alpha = base.a;
    surface.metallic = 0;
    surface.occlusion = 1;
    surface.smoothness = 0;
    surface.fresnelStrength =1;
    surface.dither = 1;
    surface.renderingLayerMask = asuint(unity_RenderingLayer.x);
    BRDF brdf = GetBRDF(surface);
    GI gi = GetGI(GI_FRAGMENT_DATA(i), surface, brdf);


    float4 lightIntensity = float4(GetGLighting(surface, brdf, gi),1);
    float4 col = lerp(_BottomColor, _TopColor * lightIntensity, i.uv.y);
    return col;
}


#endif

您可能感兴趣的与本文相关的镜像

Wan2.2-I2V-A14B

Wan2.2-I2V-A14B

图生视频
Wan2.2

Wan2.2是由通义万相开源高效文本到视频生成模型,是有​50亿参数的轻量级视频生成模型,专为快速内容创作优化。支持480P视频生成,具备优秀的时序连贯性和运动推理能力

【电力系统】单机无穷大电力系统短路故障暂态稳定Simulink仿真(带说明文档)内容概要:本文档围绕“单机无穷大电力系统短路故障暂态稳定Simulink仿真”展开,提供了完整的仿真模型与说明文档,重点研究电力系统在发生短路故障后的暂态稳定性问题。通过Simulink搭建单机无穷大系统模型,模拟不同类型的短路故障(如三相短路),分析系统在故障期间及切除后的动态响应,包括发电机转子角度、转速、电压和功率等关键参数的变化,进而评估系统的暂态稳定能力。该仿真有助于理解电力系统稳定性机理,掌握暂态过程分析方法。; 适合人群:电气工程及相关专业的本科生、研究生,以及从事电力系统分析、运行与控制工作的科研人员和工程师。; 使用场景及目标:①学习电力系统暂态稳定的基本概念与分析方法;②掌握利用Simulink进行电力系统建模与仿真的技能;③研究短路故障对系统稳定性的影响及提高稳定性的措施(如故障清除时间优化);④辅助课程设计、毕业设计或科研项目中的系统仿真验证。; 阅读建议:建议结合电力系统稳定性理论知识进行学习,先理解仿真模型各模块的功能与参数设置,再运行仿真并仔细分析输出结果,尝试改变故障类型或系统参数以观察其对稳定性的影响,从而深化对暂态稳定问题的理解。
本研究聚焦于运用MATLAB平台,将支持向量机(SVM)应用于数据预测任务,并引入粒子群优化(PSO)算法对模型的关键参数进行自动调优。该研究属于机器学习领域的典型实践,其核心在于利用SVM构建分类模型,同时借助PSO的全局搜索能力,高效确定SVM的最优超参数配置,从而显著增强模型的整体预测效能。 支持向量机作为一种经典的监督学习方法,其基本原理是通过在高维特征空间中构造一个具有最大间隔的决策边界,以实现对样本数据的分类或回归分析。该算法擅长处理小规模样本集、非线性关系以及高维度特征识别问题,其有效性源于通过核函数将原始数据映射至更高维的空间,使得原本复杂的分类问题变得线性可分。 粒子群优化算法是一种模拟鸟群社会行为的群体智能优化技术。在该算法框架下,每个潜在解被视作一个“粒子”,粒子群在解空间中协同搜索,通过不断迭代更新自身速度与位置,并参考个体历史最优解和群体全局最优解的信息,逐步逼近问题的最优解。在本应用中,PSO被专门用于搜寻SVM中影响模型性能的两个关键参数——正则化参数C与核函数参数γ的最优组合。 项目所提供的实现代码涵盖了从数据加载、预处理(如标准化处理)、基础SVM模型构建到PSO优化流程的完整步骤。优化过程会针对不同的核函数(例如线性核、多项式核及径向基函数核等)进行参数寻优,并系统评估优化前后模型性能的差异。性能对比通常基于准确率、精确率、召回率及F1分数等多项分类指标展开,从而定量验证PSO算法在提升SVM模型分类能力方面的实际效果。 本研究通过一个具体的MATLAB实现案例,旨在演示如何将全局优化算法与机器学习模型相结合,以解决模型参数选择这一关键问题。通过此实践,研究者不仅能够深入理解SVM的工作原理,还能掌握利用智能优化技术提升模型泛化性能的有效方法,这对于机器学习在实际问题中的应用具有重要的参考价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值