分析:
给出N个点和M条边,求从点S到点T的第K短路,每个点可以被经过多次。A*搜索:
估价函数 f(x)=g(x)+h(x)
g(x) 为从初始状态转移到 x 状态的代价,
h(x) 为下界函数( x 状态转移到T状态还需要的花费)题解:
将图的边反向,以t为源点,求t到所有点的的最短路,并把这个最短路作为下界函数
h(x) 的值。用一个优先队列存以S为起点的路径对应的终点 x,f(x),g(x)
从优先队列中弹出f(x)最小的点x,如果点x就是t,计算t出队的次数,如果当前为t的第k次出队,则当前路径的长g(x)就是s到t的第k短路的长度。
否则遍历与x相连的所有的边,将扩展出的路径信息加入优先队列,进行重复操作。代码:
1.建图:
int e;
struct node
{
int v, w, next;
}edge[MaxM], revedge[MaxM];
int head[MaxN], revhead[MaxN];//revhead为反向建图
void init()
{
e = 0;
memset(head, -1, sizeof(head));
memset(revhead, -1, sizeof(revhead));
}
void Add(int x, int y, int w)
{//邻接链表
edge[e].v = y;
edge[e].w = w;
edge[e].next = head[x];
head[x] = e;
revedge[e].v = x;
revedge[e].w = w;
revedge[e].next =revhead[y];
revhead[y] = e++;
}
2.SPFA求最短路:
int vis[MaxN], d[MaxN], q[MaxM*5];
void SPFA(int src)
{
for(int i = 1; i <= N; i++) d[i] = INF;
memset(vis, 0, sizeof(vis));
vis[src] = 0;
int h = 0, t = 1;
q[0] = src;
d[src] = 0;
while(h < t)
{
int u = q[h++];
vis[u] = 0;
for(int i = revhead[u] ; i != -1; i = revedge[i].next)
{
int v = revedge[i].v;
int w = revedge[i].w;
if(d[v] > d[u] + w)
{
d[v] = d[u] + w;
if(!vis[v])
{
q[t++] = v;
vis[v] = 1;
}
}
}
}
}
3.A*搜索:
struct A
{
int f, g, v;
bool operator <(const A a)const
{
if(a.f == f)
return a.g < g;
return a.f < f;
}
};
int Astar(int src, int des)
{
int cnt = 0;
priority_queue<A>Q;
if(src == des) K++;
if(d[src] == INF) return -1;
A t, tt;
t.v = src, t.g = 0, t.f = t.g + d[src];
Q.push(t);
while(!Q.empty())
{
tt = Q.top();
Q.pop();
if(tt.v == des)
{
cnt++;
if(cnt == K) return tt.g;
}
for(int i = head[tt.v]; i != -1; i = edge[i].next)
{
t.v = edge[i].v;
t.g = tt.g + edge[i].w;
t.f = t.g + d[t.v];
Q.push(t);
}
}
return -1;
}
- AC代码:
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cctype>
#include <stack>
#include <map>
#include <set>
#include <queue>
using namespace std;
typedef pair<int,int> Pii;
typedef long long LL;
typedef unsigned long long ULL;
typedef double DBL;
typedef long double LDBL;
#define MST(a,b) memset(a,b,sizeof(a))
#define CLR(a) MST(a,0)
#define Sqr(a) ((a)*(a))
#define MaxN 1005
#define MaxM 500005
#define INF 1000000000
int N,M;
int S,T,K;
struct node
{
int v, w, next;
}edge[MaxM], revedge[MaxM];
int head[MaxN], revhead[MaxN];
int e, vis[MaxN], d[MaxN], q[MaxM * 5];
struct A
{
int f, g, v;
bool operator <(const A a)const
{
if(a.f == f)
return a.g < g;
return a.f < f;
}
};
void init()
{
e = 0;
memset(head, -1, sizeof(head));
memset(revhead, -1, sizeof(revhead));
}
void Add(int x, int y, int w)
{
edge[e].v = y;
edge[e].w = w;
edge[e].next = head[x];
head[x] = e;
revedge[e].v = x;
revedge[e].w = w;
revedge[e].next =revhead[y];
revhead[y] = e++;
}
void SPFA(int src)
{
for(int i = 1; i <= N; i++) d[i] = INF;
memset(vis, 0, sizeof(vis));
vis[src] = 0;
int h = 0, t = 1;
q[0] = src;
d[src] = 0;
while(h < t)
{
int u = q[h++];
vis[u] = 0;
for(int i = revhead[u] ; i != -1; i = revedge[i].next)
{
int v = revedge[i].v;
int w = revedge[i].w;
if(d[v] > d[u] + w)
{
d[v] = d[u] + w;
if(!vis[v])
{
q[t++] = v;
vis[v] = 1;
}
}
}
}
}
int Astar(int src, int des)
{
int cnt = 0;
priority_queue<A>Q;
if(src == des) K++;
if(d[src] == INF) return -1;
A t, tt;
t.v = src, t.g = 0, t.f = t.g + d[src];
Q.push(t);
while(!Q.empty())
{
tt = Q.top();
Q.pop();
if(tt.v == des)
{
cnt++;
if(cnt == K) return tt.g;
}
for(int i = head[tt.v]; i != -1; i = edge[i].next)
{
t.v = edge[i].v;
t.g = tt.g + edge[i].w;
t.f = t.g + d[t.v];
Q.push(t);
}
}
return -1;
}
int main()
{
init();
while( ~scanf("%d%d", &N, &M) )
{
for(int i=0;i<M;i++)
{
scanf("%d%d%d", &S, &T, &K);
Add(S, T, K);
}
scanf("%d%d%d", &S, &T, &K);
SPFA(T);
printf("%d\n", Astar(S, T));
}
return 0;
}

本文介绍了一种利用A*搜索算法求解从点S到点T的第K短路径的方法。通过构建图的反向边并采用SPFA算法预处理目标点到各点的最短距离作为估价函数的一部分,再结合A*搜索算法,实现有效求解。

被折叠的 条评论
为什么被折叠?



