HDU2588GCD(欧拉函数)

传送阵

题意:求1-n中有多少数是与n的gcd大于m的。

思路:gcd(x,n)=a,则gcd(x/a,n/a)=1,所以x/a与n/a互质,n=a*b,x=a*d,则b与d互质且b>=d,所以d的数量就是b的欧拉函数值。

但再一看这道题的数据是1亿,所以枚举肯定超时,我们就要用一种方法去优化。可以枚举1到sqrt(n),所以当n%i==0时,若i>=m则ans+=euler(n/i),否则若n/i>=m时,ans+=euler(i),注意n=i*i的情况,在前面算过了不要再算一次。

#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
#define ll long long
#define mem(ar,num) memset(ar,num,sizeof(ar))
#define me(ar) memset(ar,0,sizeof(ar))
#define lowbit(x) (x&(-x))
#define IOS ios::sync_with_stdio(false)
#define DEBUG cout<<endl<<"DEBUG"<<endl;
#define Max 100001
using namespace std;
int euler(int n) {
    int res = n, a = n;
    for(int i = 2; i * i <= a; i++) {
        if(a % i == 0) {
            res = res / i * (i - 1);
            while(a % i == 0)
                a /= i;
        }
    }
    if(a > 1)
        res = res / a * (a - 1);
    return res;
}
int main() {
    int t;
    cin >> t;
    while(t--) {
        ll n, m;
        cin >> n >> m;
        ll ans = 0;
        for(ll i = 1; i * i <= n; i++) {
            if(n % i == 0) {
                if(i >= m)
                    ans += euler(n / i);
                if(n / i >= m && n / i != i)//n/i=i的情况在上面已经加了
                    ans += euler(i);
            }
        }
        printf("%I64d\n", ans);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值