MIT18.06学习笔记 - Lecture 7: Solving Ax=0: pivot variables and special solutions

这个系列文章是我重温Gilbert老爷子的线性代数在线课程的学习笔记。
Course Name:MIT 18.06 Linear Algebra
Text Book: Introduction to Linear Algebra
章节内容: 3.2-3.3


课程提纲
1. Nullspace of A A and solutions
2. The Rank and Row Reduced Form

课程重点

Nullspace of A and solutions

Nullspace N(A) consists of all solutions to Ax=0 A x = 0 , all combinations of the special solutions.

If A A is invertible, x=0 is the only solution, otherwise there are nonzero solutions.

Computing the Nullspace
Two steps to solve Ax=0 A x = 0 , A A is rectangular: elimination to Echelon Matrices and combinations of special solutions

The Rank and Row Reduced Form

The rank of A is the number of pivots. This number is r r .
The matrices A and U U and R have r r independent rows (the pivot rows) and r independent columns (the pivot columns).
The rank r r is the dimension of the column space as well as the row space.


Ax=uvTx=u(xTx)=0, so xTx=0 x T x = 0 nullspace (plane) perpendicular to row space (line):

Row Reduced Form

The nullspace matrix N N contains the three special solutions in it columns, so AN= zero matrix:

AX=0 A X = 0 has r r pivots and nr free variables: n n columns minus r pivot columns. The nullspace matrix N N contains the nr special solutions.
The special solutions are easy for Rx=0 R x = 0 . Suppose that the first r r <script type="math/tex" id="MathJax-Element-154">r</script> columns are the pivot columns:



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值