Linear Algebra Lecture 7

本文介绍如何通过矩阵消元法求解矩阵的空集,详细讲解了主变量与自由变量的概念,以及如何利用特殊解表示空集的所有解,并通过两个实例展示了整个过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Linear Algebra Lecture 7

1. Computing the nullspace
2. Pivot variables and free variables
3. Special solutions
4. rref(A) = R

Example 1

Compution the nullspace for a matrix A, find all the solutions to Ax=0Ax=0

A=1232462682810A=[1222246836810]

Eliminations
While doing elimination, will not changing the null space, solving Ax=0Ax=0 by elimination.

A=1232462682810100200222244100200220240A=[1222246836810]→[122200240024]→[122200240000]

Eliminate the matrix into echelon form, we can find two pivot.
The number of pivots is the rank of the matrix.

Pivot variables and free variables

The critical step is separating out the pivot variables(主变量). The columns with pivots are called pivot columns and the other columns are called free columns.

Pivot columns are column 1 and 3, free columns are column 2 and 4.

For these free columns can assign any number freely to those variables, x2x2 and x4x4. And then can solve the equations for x1x1 and x3x3.

{x1+2x2+2x3+2x4=02x3+4x4=0{x1+2x2+2x3+2x4=02x3+4x4=0

Special solutions

Choose 1 and 0 for free variables, get the special solutions.

x=c12100+c22021x=c1[−2100]+c2[20−21]

These are the two special solutions, the special numbers I gave to the free variables, the values 0 and 1 for the free variables.
Once have special solutions we could take any multiple of that and it’s in the null space.

The null space contains exactly all the combinations of the special solutions. There’s one special solutions for every free variable.

In this example, the rank equals the number of pivot numbers r=2r=2, number of free variables equals nr=42n−r=4−2.


Reduced row echelon form

In reduced row echelon form, has zeros above and below the pivots.

100200220240100200020240[122200240000]→[120−200240000]

Make all the pivot to 1.

100200020240100200010220[120−200240000]→[120−200120000]

R=rref(A)R=rref(A) reduced row echelon form in Matlab.

RREF got identity in pivot rows and columns.

100010200220R=[I0F0][102−201020000]→R=[IF00]

When we calculate Rx=0Rx=0

[IF][xpivotxfree]=0xpivot=Fxfree[IF][xpivotxfree]=0→xpivot=−Fxfree

We choose identity for free variables, so the pivot variables are F−F.


Example 2

A=1222246836810100020243024100022003200100001001100RA=[1232462682810]→[123000022044]→[123022000000]→[101011000000]→R

x=c111=[FI]=N(A)x=c[−1−11]=[−FI]=N(A)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值