线代强化NO10|向量|习题

![[Pasted image 20251117091218.png]]

解:(α1,α2,α3∣β1,β2,β3)=(111∣101102∣12344a2+3∣a+31−aa2+3)→(111∣1010−11∣02200a2−1∣a−11−aa2−1)(β1,β2,β3)=(101123a+31−aa2+3)→(10102201−aa2−a)→(10101100a2−1)① 当a≠±1时可以读出 r(α1,α2,α3)=3, r(α1,α2,α3,β1,β2,β3)=3, r(β1,β2,β3)=3则α1,α2,α3与β1,β2,β3等价\begin{aligned} &\text{解:}(\boxed{\alpha}_1,\boxed{\alpha}_2,\boxed{\alpha}_3 \mid \boxed{\beta}_1,\boxed{\beta}_2,\boxed{\beta}_3) = \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 1 \\ 1 & 0 & 2 & | & 1 & 2 & 3 \\ 4 & 4 & a^2+3 & | & a+3 & 1-a & a^2+3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 1 \\ 0 & -1 & 1 & | & 0 & 2 & 2 \\ 0 & 0 & a^2-1 & | & a-1 & 1-a & a^2-1 \end{pmatrix} \\ &\quad(\boxed{\beta}_1,\boxed{\beta}_2,\boxed{\beta}_3) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 3 \\ a+3 & 1-a & a^2+3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 1-a & a^2-a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & a^2-1 \end{pmatrix} \\ &\quad①\ \text{当}a\neq\pm1\text{时} \\ &\quad\quad\text{可以读出}\ r(\boxed{\alpha}_1,\boxed{\alpha}_2,\boxed{\alpha}_3)=3,\ r(\boxed{\alpha}_1,\boxed{\alpha}_2,\boxed{\alpha}_3,\boxed{\beta}_1,\boxed{\beta}_2,\boxed{\beta}_3)=3,\ r(\boxed{\beta}_1,\boxed{\beta}_2,\boxed{\beta}_3)=3 \\ &\quad\quad\text{则}\boxed{\alpha}_1,\boxed{\alpha}_2,\boxed{\alpha}_3\text{与}\boxed{\beta}_1,\boxed{\beta}_2,\boxed{\beta}_3\text{等价} \end{aligned}解:(α1,α2,α3β1,β2,β3)=11410412a2+311a+3021a13a2+310011011a2110a1021a12a21(β1,β2,β3)=11a+3021a13a2+3100021a12a2a10001011a21 a=±1可以读出 r(α1,α2,α3)=3, r(α1,α2,α3,β1,β2,β3)=3, r(β1,β2,β3)=3α1,α2,α3β1,β2,β3等价
② 当a=1时,r(β1,β2,β3)=2, r(α1,α2,α3)=2, r(α1,α2,α3,β1,β2,β3)=2则α1,α2,α3与β1,β2,β3等价③ 当a=−1时,r(β1,β2,β3)=2, r(α1,α2,α3)=2, r(α1,α2,α3,β1,β2,β3)=3则α1,α2,α3与β1,β2,β3不等价故a≠−1\begin{aligned} &②\ \text{当}a=1\text{时,}r(\boxed{\beta}_1,\boxed{\beta}_2,\boxed{\beta}_3)=2,\ r(\boxed{\alpha}_1,\boxed{\alpha}_2,\boxed{\alpha}_3)=2,\ r(\boxed{\alpha}_1,\boxed{\alpha}_2,\boxed{\alpha}_3,\boxed{\beta}_1,\boxed{\beta}_2,\boxed{\beta}_3)=2 \\ &\quad\text{则}\boxed{\alpha}_1,\boxed{\alpha}_2,\boxed{\alpha}_3\text{与}\boxed{\beta}_1,\boxed{\beta}_2,\boxed{\beta}_3\text{等价} \\ &③\ \text{当}a=-1\text{时,}r(\boxed{\beta}_1,\boxed{\beta}_2,\boxed{\beta}_3)=2,\ r(\boxed{\alpha}_1,\boxed{\alpha}_2,\boxed{\alpha}_3)=2,\ r(\boxed{\alpha}_1,\boxed{\alpha}_2,\boxed{\alpha}_3,\boxed{\beta}_1,\boxed{\beta}_2,\boxed{\beta}_3)=3 \\ &\quad\text{则}\boxed{\alpha}_1,\boxed{\alpha}_2,\boxed{\alpha}_3\text{与}\boxed{\beta}_1,\boxed{\beta}_2,\boxed{\beta}_3\text{不等价} \\ &\text{故}a\neq-1 \end{aligned} a=1时,r(β1,β2,β3)=2, r(α1,α2,α3)=2, r(α1,α2,α3,β1,β2,β3)=2α1,α2,α3β1,β2,β3等价 a=1时,r(β1,β2,β3)=2, r(α1,α2,α3)=2, r(α1,α2,α3,β1,β2,β3)=3α1,α2,α3β1,β2,β3不等价a=1
故a≠−1当a=1时,(111∣10−11∣2000∣0)→(102∣301−1∣−2000∣0), 故β3=(3−2k)α1+(−2+k)α2+kα3, k∈R当a≠±1时,(111∣10−11∣200a2−1∣a2−1)→(111∣101−1∣−2001∣1)→(100∣1010∣−1001∣1), β3=α1−α2+α3\begin{aligned} &\text{故}a\neq-1 \\ &\text{当}a=1\text{时,}\begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & -1 & 1 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & | & 3 \\ 0 & 1 & -1 & | & -2 \\ 0 & 0 & 0 & | & 0 \end{pmatrix},\ \text{故}\boxed{\beta}_3=(3-2k)\boxed{\alpha}_1+(-2+k)\boxed{\alpha}_2+k\boxed{\alpha}_3,\ k\in\mathbb{R} \\ &\text{当}a\neq\pm1\text{时,}\begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & -1 & 1 & | & 2 \\ 0 & 0 & a^2-1 & | & a^2-1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 1 & -1 & | & -2 \\ 0 & 0 & 1 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & 1 \end{pmatrix},\ \boxed{\beta}_3=\boxed{\alpha}_1-\boxed{\alpha}_2+\boxed{\alpha}_3 \end{aligned}a=1a=1时,100110110120100010210320, β3=(32k)α1+(2+k)α2+kα3, kRa=±1时,10011011a2112a21100110111121100010001111, β3=α1α2+α3
【小结】1. 向量组α1,⋯ ,αn能由向量组β1,⋯ ,βm线性表出,相当于线性方程组(β1,⋯ ,βm)x=αi (i=1,⋯ ,n)都有解。由于这n个线性方程组的系数矩阵一样(都为(β1,⋯ ,βm)),所以我们可以将这n个线性方程组写在一起,组成一个大型增广矩阵(β1,⋯ ,βm,α1,⋯ ,αn),再做初等行变换。2. 向量组α1,⋯ ,αn中只要有一个向量无法被另一个向量组β1,⋯ ,βm线性表出,就称为向量组α1,⋯ ,αn不能由向量组β1,⋯ ,βm线性表出。3. α1,⋯ ,αn与β1,⋯ ,βm等价⇔r(α1,⋯ ,αn)=r(β1,⋯ ,βm)=r(α1,⋯ ,αn,β1,⋯ ,βm)。 \begin{aligned} &\text{【小结】} \\ &1.\ \text{向量组}\boxed{\alpha}_1,\cdots,\boxed{\alpha}_n\text{能由向量组}\boxed{\beta}_1,\cdots,\boxed{\beta}_m\text{线性表出,相当于线性方程组} \\ &\quad(\boxed{\beta}_1,\cdots,\boxed{\beta}_m)\boxed{x}=\boxed{\alpha}_i\ (i=1,\cdots,n)\text{都有解。由于这}n\text{个线性方程组的系数矩阵一样(都为} \\ &\quad(\boxed{\beta}_1,\cdots,\boxed{\beta}_m)\text{),所以我们可以将这}n\text{个线性方程组写在一起,组成一个大型增广矩阵} \\ &\quad(\boxed{\beta}_1,\cdots,\boxed{\beta}_m,\boxed{\alpha}_1,\cdots,\boxed{\alpha}_n)\text{,再做初等行变换。} \\ &2.\ \text{向量组}\boxed{\alpha}_1,\cdots,\boxed{\alpha}_n\text{中只要有一个向量无法被另一个向量组}\boxed{\beta}_1,\cdots,\boxed{\beta}_m\text{线性表出,就称为} \\ &\quad\text{向量组}\boxed{\alpha}_1,\cdots,\boxed{\alpha}_n\text{不能由向量组}\boxed{\beta}_1,\cdots,\boxed{\beta}_m\text{线性表出。} \\ &3.\ \boxed{\alpha}_1,\cdots,\boxed{\alpha}_n\text{与}\boxed{\beta}_1,\cdots,\boxed{\beta}_m\text{等价} \Leftrightarrow r(\boxed{\alpha}_1,\cdots,\boxed{\alpha}_n)=r(\boxed{\beta}_1,\cdots,\boxed{\beta}_m)=r(\boxed{\alpha}_1,\cdots,\boxed{\alpha}_n,\boxed{\beta}_1,\cdots,\boxed{\beta}_m)。 \end{aligned} 【小结】1. 向量组α1,,αn能由向量组β1,,βm线性表出,相当于线性方程组(β1,,βm)x=αi (i=1,,n)都有解。由于这n个线性方程组的系数矩阵一样(都为(β1,,βm)),所以我们可以将这n个线性方程组写在一起,组成一个大型增广矩阵(β1,,βm,α1,,αn),再做初等行变换。2. 向量组α1,,αn中只要有一个向量无法被另一个向量组β1,,βm线性表出,就称为向量组α1,,αn不能由向量组β1,,βm线性表出。3. α1,,αnβ1,,βm等价r(α1,,αn)=r(β1,,βm)=r(α1,,αn,β1,,βm)

线性相关与线性无关的判定与证明

![[Pasted image 20251117103823.png]]

解:法1:(223411231a121aa1)→(112300−1−20a−1−1−10a−1a−2−2)→(11230a−1−1−100a−1−100−1−2)→(11230a−1−1−100−1−20001−2a)因向量组线性相关且a≠1,故1−2a=0  ⟹  a=12法2:∣223411231a121aa1∣=∣00−1−211230a−1−1−10a−1a−2−2∣=1⋅(−1)1+2∣0−1−2a−1−1−1a−1a−2−2∣=∣012a−1−1−10a−1−1∣=(−1)1+2(a−1)∣12a−1−1∣=−(a−1)(1−2a)=0因a≠1,故1−2a=0  ⟹  a=12\begin{aligned} &\text{解:法1:} \\ &\quad\begin{pmatrix} 2 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3 \\ 1 & a & 1 & 2 \\ 1 & a & a & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & 3 \\ 0 & 0 & -1 & -2 \\ 0 & a-1 & -1 & -1 \\ 0 & a-1 & a-2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & 3 \\ 0 & a-1 & -1 & -1 \\ 0 & 0 & a-1 & -1 \\ 0 & 0 & -1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & 3 \\ 0 & a-1 & -1 & -1 \\ 0 & 0 & -1 & -2 \\ 0 & 0 & 0 & 1-2a \end{pmatrix} \\ &\quad\text{因向量组线性相关且}a\neq1\text{,故}1-2a=0\implies a=\frac{1}{2} \\ &\text{法2:} \\ &\quad\begin{vmatrix} 2 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3 \\ 1 & a & 1 & 2 \\ 1 & a & a & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & -1 & -2 \\ 1 & 1 & 2 & 3 \\ 0 & a-1 & -1 & -1 \\ 0 & a-1 & a-2 & -2 \end{vmatrix} = 1\cdot(-1)^{1+2}\begin{vmatrix} 0 & -1 & -2 \\ a-1 & -1 & -1 \\ a-1 & a-2 & -2 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 2 \\ a-1 & -1 & -1 \\ 0 & a-1 & -1 \end{vmatrix} \\ &\quad= (-1)^{1+2}(a-1)\begin{vmatrix} 1 & 2 \\ a-1 & -1 \end{vmatrix} = -(a-1)(1-2a) = 0 \\ &\quad\text{因}a\neq1\text{,故}1-2a=0\implies a=\frac{1}{2} \end{aligned}解:法1211121aa321a4321100010a1a1211a2321210001a10021a11311210001a100211031212a因向量组线性相关且a=1,故12a=0a=212211121aa321a4321=010001a1a1121a22312=1(1)1+20a1a111a2212=0a1011a1211=(1)1+2(a1)1a121=(a1)(12a)=0a=1,故12a=0a=21
![[Pasted image 20251117105351.png]]

(001−101−11c1c2c3c4)→(001−10100c1c2c3c4)\begin{pmatrix} 0 & 0 & 1 & -1 \\ 0 & 1 & -1 & 1 \\ c_1 & c_2 & c_3 & c_4 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0 \\ c_1 & c_2 & c_3 & c_4 \end{pmatrix}00c101c211c311c400c101c210c310c4
选C
【小结】1. 数值型向量组的线性相关性基本思路是通过秩来判断:满秩,无关;不满秩,相关;2. 如果α1,⋯ ,αn恰好为n维向量组,可以组成方阵,就考虑通过行列式来判断:行列式不为0,无关;为0,相关。 \begin{aligned} &\text{【小结】} \\ &1.\ \text{数值型向量组的线性相关性基本思路是通过秩来判断:满秩,无关;不满秩,相关;} \\ &2.\ \text{如果}\boxed{\alpha}_1,\cdots,\boxed{\alpha}_n\text{恰好为}n\text{维向量组,可以组成方阵,就考虑通过行列式来判断:行列式不为}0\text{,无关;为}0\text{,相关。} \end{aligned} 【小结】1. 数值型向量组的线性相关性基本思路是通过秩来判断:满秩,无关;不满秩,相关;2. 如果α1,,αn恰好为n维向量组,可以组成方阵,就考虑通过行列式来判断:行列式不为0,无关;为0,相关。
![[Pasted image 20251117172007.png]]

解:(α1−α2,α2−α3,α3−α1)=(α1,α2,α3)(10−1−1100−11)∣10−1−1100−11∣=∣10−101−10−11∣=0, r(α1−α2,α2−α3,α3−α1)=r(10−1−1100−11)<3故α1−α2,α2−α3,α3−α1相关\begin{aligned} &\text{解:}(\boxed{\alpha}_1-\boxed{\alpha}_2,\boxed{\alpha}_2-\boxed{\alpha}_3,\boxed{\alpha}_3-\boxed{\alpha}_1)=(\boxed{\alpha}_1,\boxed{\alpha}_2,\boxed{\alpha}_3)\begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \\ &\quad\begin{vmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{vmatrix} = 0,\ r(\boxed{\alpha}_1-\boxed{\alpha}_2,\boxed{\alpha}_2-\boxed{\alpha}_3,\boxed{\alpha}_3-\boxed{\alpha}_1)=r\begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} < 3 \\ &\quad\text{故}\boxed{\alpha}_1-\boxed{\alpha}_2,\boxed{\alpha}_2-\boxed{\alpha}_3,\boxed{\alpha}_3-\boxed{\alpha}_1\text{相关} \end{aligned}解:(α1α2,α2α3,α3α1)=(α1,α2,α3)110011101110011101=100011111=0, r(α1α2,α2α3,α3α1)=r110011101<3α1α2,α2α3,α3α1相关
【小结】若n维向量α1,α2,α3线性无关,且满足[β1,β2,β3]=[α1,α2,α3]C,则β1,β2,β3线性无关的充要条件是行列式∣C∣≠0.\begin{aligned} &\text{【小结】} \\ &\quad\text{若}n\text{维向量}\boxed{\alpha}_1,\boxed{\alpha}_2,\boxed{\alpha}_3\text{线性无关,且满足} \\ &\quad[\boxed{\beta}_1,\boxed{\beta}_2,\boxed{\beta}_3] = [\boxed{\alpha}_1,\boxed{\alpha}_2,\boxed{\alpha}_3]C, \\ &\quad\text{则}\boxed{\beta}_1,\boxed{\beta}_2,\boxed{\beta}_3\text{线性无关的充要条件是行列式}|C| \neq 0. \end{aligned}【小结】n维向量α1,α2,α3线性无关,且满足[β1,β2,β3]=[α1,α2,α3]C,β1,β2,β3线性无关的充要条件是行列式C=0.
![[Pasted image 20251117173038.png]]

解:(α1+kα3,α2+lα3)=(α1,α2,α3)(1001kl)若α1,α2,α3无关,(α1,α2,α3)可逆,r(α1+kα3,α2+lα3)=r(1001kl)=2,则α1+kα3,α2+lα3无关若α1+kα3,α2+lα3无关,α1,α2,α3不一定无关反例:令α3=0,α1,α2无关,但α1,α2,α3相关A⇒BA是B的充分B是A的必要B的充分是AA的必要是B\begin{aligned} &\text{解:}(\boxed{\alpha}_1 + k\boxed{\alpha}_3, \boxed{\alpha}_2 + l\boxed{\alpha}_3) = (\boxed{\alpha}_1, \boxed{\alpha}_2, \boxed{\alpha}_3)\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ k & l \end{pmatrix} \\ &\quad\text{若}\boxed{\alpha}_1, \boxed{\alpha}_2, \boxed{\alpha}_3\text{无关,}(\boxed{\alpha}_1, \boxed{\alpha}_2, \boxed{\alpha}_3)\text{可逆,}r(\boxed{\alpha}_1 + k\boxed{\alpha}_3, \boxed{\alpha}_2 + l\boxed{\alpha}_3) = r\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ k & l \end{pmatrix} = 2,\text{则}\boxed{\alpha}_1 + k\boxed{\alpha}_3, \boxed{\alpha}_2 + l\boxed{\alpha}_3\text{无关} \\ &\quad\text{若}\boxed{\alpha}_1 + k\boxed{\alpha}_3, \boxed{\alpha}_2 + l\boxed{\alpha}_3\text{无关,}\boxed{\alpha}_1, \boxed{\alpha}_2, \boxed{\alpha}_3\text{不一定无关} \\ &\quad\text{反例:令}\boxed{\alpha}_3 = 0, \boxed{\alpha}_1, \boxed{\alpha}_2\text{无关,但}\boxed{\alpha}_1, \boxed{\alpha}_2, \boxed{\alpha}_3\text{相关} \\ &\quad\quad\quad A \Rightarrow B \\ &\quad\quad\quad A\text{是}B\text{的充分} \\ &\quad\quad\quad B\text{是}A\text{的必要} \\ &\quad\quad\quad B\text{的充分是}A \\ &\quad\quad\quad A\text{的必要是}B \\ \end{aligned}解:(α1+kα3,α2+lα3)=(α1,α2,α3)10k01lα1,α2,α3无关,(α1,α2,α3)可逆,r(α1+kα3,α2+lα3)=r10k01l=2,α1+kα3,α2+lα3无关α1+kα3,α2+lα3无关,α1,α2,α3不一定无关反例:令α3=0,α1,α2无关,但α1,α2,α3相关ABAB的充分BA的必要B的充分是AA的必要是B
选A
![[Pasted image 20251117174431.png]]

选B
存在一组不全为0的数
![[Pasted image 20251117174939.png]]

{a11b1+a12b2+⋯+a1nbn=0α1Tβ=0βTα1=0a21b1+a22b2+⋯+a2nbn=0α2Tβ=0βTα2=0⋮⋮⋮ar1b1+ar2b2+⋯+arnbn=0αrTβ=0βTαr=0解:由β为方程的解可知,α1Tβ=0, α2Tβ=0, ⋯ , αrTβ=0, 即 βTα1=βTα2=⋯=βTαr=0设 k1α1+k2α2+⋯+krαr+kr+1β=0 k1βTα1+k2βTα2+⋯+krβTαr+kr+1βTβ=kr+1βTβ=kr+1(b12+b22+⋯+bn2)=0则kr+1=0. 又α1,α2,⋯ ,αr无关,故k1=k2=⋯=kr=0\begin{aligned} &\begin{cases} a_{11}b_1 + a_{12}b_2 + \cdots + a_{1n}b_n = 0 & \boxed{\alpha}_1^T\boxed{\beta} = 0 & \boxed{\beta}^T\boxed{\alpha}_1 = 0 \\ a_{21}b_1 + a_{22}b_2 + \cdots + a_{2n}b_n = 0 & \boxed{\alpha}_2^T\boxed{\beta} = 0 & \boxed{\beta}^T\boxed{\alpha}_2 = 0 \\ \vdots & \vdots & \vdots \\ a_{r1}b_1 + a_{r2}b_2 + \cdots + a_{rn}b_n = 0 & \boxed{\alpha}_r^T\boxed{\beta} = 0 & \boxed{\beta}^T\boxed{\alpha}_r = 0 \\ \end{cases} \\ &\text{解:由}\boxed{\beta}\text{为方程的解可知,} \\ &\quad\boxed{\alpha}_1^T\boxed{\beta} = 0,\ \boxed{\alpha}_2^T\boxed{\beta} = 0,\ \cdots,\ \boxed{\alpha}_r^T\boxed{\beta} = 0,\ \text{即}\ \boxed{\beta}^T\boxed{\alpha}_1 = \boxed{\beta}^T\boxed{\alpha}_2 = \cdots = \boxed{\beta}^T\boxed{\alpha}_r = 0 \\ &\quad\text{设}\ k_1\boxed{\alpha}_1 + k_2\boxed{\alpha}_2 + \cdots + k_r\boxed{\alpha}_r + k_{r+1}\boxed{\beta} = 0 \\ &\quad\ k_1\boxed{\beta}^T\boxed{\alpha}_1 + k_2\boxed{\beta}^T\boxed{\alpha}_2 + \cdots + k_r\boxed{\beta}^T\boxed{\alpha}_r + k_{r+1}\boxed{\beta}^T\boxed{\beta} = k_{r+1}\boxed{\beta}^T\boxed{\beta} = k_{r+1}(b_1^2 + b_2^2 + \cdots + b_n^2) = 0 \\ &\quad\text{则}k_{r+1} = 0.\ \text{又}\boxed{\alpha}_1,\boxed{\alpha}_2,\cdots,\boxed{\alpha}_r\text{无关,故}k_1 = k_2 = \cdots = k_r = 0 \\ \end{aligned}a11b1+a12b2++a1nbn=0a21b1+a22b2++a2nbn=0ar1b1+ar2b2++arnbn=0α1Tβ=0α2Tβ=0αrTβ=0βTα1=0βTα2=0βTαr=0解:由β为方程的解可知,α1Tβ=0, α2Tβ=0, , αrTβ=0,  βTα1=βTα2==βTαr=0 k1α1+k2α2++krαr+kr+1β=0 k1βTα1+k2βTα2++krβTαr+kr+1βTβ=kr+1βTβ=kr+1(b12+b22++bn2)=0kr+1=0. α1,α2,,αr无关,故k1=k2==kr=0
故α1,α2,⋯ ,αr,β无关.\text{故}\boxed{\alpha}_1,\boxed{\alpha}_2,\cdots,\boxed{\alpha}_r,\boxed{\beta}\text{无关}.α1,α2,,αr,β无关.

【小结】证明向量组线性无关最常用的方法是利用定义:先假设k1α1+k2α2+⋯+knαn=0,再对该等式进行恒等变形,借助于已知条件说明其系数k1,k2,⋯ ,kn全为0。此时常用的思路有两种:一是将式k1α1+k2α2+⋯+knαn=0展开,化为关于k1,k2,⋯ ,kn的齐次线性方程组;另一种思路是按照已知的信息,在等式两边同时乘以某矩阵之后对等式进行重组,如果处理得当,运算之后等式k1α1+k2α2+⋯+knαn=0将会得到简化,从而利用条件推导出系数k1,k2,⋯ ,kn全为0。其中后一种方法适用范围较广,考试对它的考查也较多,使用它的关键是选择等式两边要乘的矩阵,这里的基本原则是尽量向已知条件靠拢,尽量简化等式k1α1+k2α2+⋯+knαn=0。\begin{aligned} &\text{【小结】证明向量组线性无关最常用的方法是利用定义:先假设} \\ &\quad k_1\boxed{\alpha}_1 + k_2\boxed{\alpha}_2 + \cdots + k_n\boxed{\alpha}_n = \boxed{0}, \\ &\quad\text{再对该等式进行恒等变形,借助于已知条件说明其系数}k_1, k_2, \cdots, k_n\text{全为}0\text{。} \\ &\quad\text{此时常用的思路有两种:} \\ &\quad\text{一是将式}k_1\boxed{\alpha}_1 + k_2\boxed{\alpha}_2 + \cdots + k_n\boxed{\alpha}_n = \boxed{0}\text{展开,化为关于}k_1, k_2, \cdots, k_n\text{的齐次线性方程组;} \\ &\quad\text{另一种思路是按照已知的信息,在等式两边同时乘以某矩阵之后对等式进行重组,} \\ &\quad\text{如果处理得当,运算之后等式}k_1\boxed{\alpha}_1 + k_2\boxed{\alpha}_2 + \cdots + k_n\boxed{\alpha}_n = \boxed{0}\text{将会得到简化,} \\ &\quad\text{从而利用条件推导出系数}k_1, k_2, \cdots, k_n\text{全为}0\text{。} \\ &\quad\text{其中后一种方法适用范围较广,考试对它的考查也较多,使用它的关键是选择等式} \\ &\quad\text{两边要乘的矩阵,这里的基本原则是尽量向已知条件靠拢,尽量简化等式}k_1\boxed{\alpha}_1 + k_2\boxed{\alpha}_2 + \cdots + k_n\boxed{\alpha}_n = \boxed{0}\text{。} \\ \end{aligned}【小结】证明向量组线性无关最常用的方法是利用定义:先假设k1α1+k2α2++knαn=0,再对该等式进行恒等变形,借助于已知条件说明其系数k1,k2,,kn全为0此时常用的思路有两种:一是将式k1α1+k2α2++knαn=0展开,化为关于k1,k2,,kn的齐次线性方程组;另一种思路是按照已知的信息,在等式两边同时乘以某矩阵之后对等式进行重组,如果处理得当,运算之后等式k1α1+k2α2++knαn=0将会得到简化,从而利用条件推导出系数k1,k2,,kn全为0其中后一种方法适用范围较广,考试对它的考查也较多,使用它的关键是选择等式两边要乘的矩阵,这里的基本原则是尽量向已知条件靠拢,尽量简化等式k1α1+k2α2++knαn=0
![[Pasted image 20251117184333.png]]

选A
β1=k1α1+k2α2+k3α3 \beta_{1}=k_{1}\alpha_{1}+k_{2}\alpha_{2}+k_{3}\alpha_{3} β1=k1α1+k2α2+k3α3
![[Pasted image 20251117184631.png]]

选A
![[Pasted image 20251117184754.png]]

解:设 α1α+α2Aα+⋯+αkAk−1α=0同时乘Ak−1, α1Ak−1α+α2Akα+⋯+αkA2k−2α=0α1Ak−1α=0, α1=0, 依次类推,可证明 α1=α2=⋯=αk=0则 α,Aα,⋯ ,Ak−1α线性无关\begin{aligned} &\text{解:设}\ \alpha_1\alpha + \alpha_2A\alpha + \cdots + \alpha_kA^{k-1}\alpha = 0 \\ &\quad\text{同时乘}A^{k-1},\ \alpha_1A^{k-1}\alpha + \alpha_2A^k\alpha + \cdots + \alpha_kA^{2k-2}\alpha = 0 \\ &\quad\alpha_1A^{k-1}\alpha = 0,\ \alpha_1 = 0,\ \text{依次类推,可证明}\ \alpha_1 = \alpha_2 = \cdots = \alpha_k = 0 \\ &\quad\text{则}\ \alpha, A\alpha, \cdots, A^{k-1}\alpha\text{线性无关} \end{aligned}解:设 α1α+α2Aα++αkAk1α=0同时乘Ak1, α1Ak1α+α2Akα++αkA2k2α=0α1Ak1α=0, α1=0, 依次类推,可证明 α1=α2==αk=0 α,Aα,,Ak1α线性无关
![[Pasted image 20251117190033.png]]

解:设B=(β1,β2,⋯ ,βn),则x1β1+x2β2+⋯+xnβn=0, (β1,β2,⋯ ,βn)(x1x2⋮xn)=0, Bx=0左乘A, ABx=0, Ex=0, x=0, Bx=0只有零解故B的列向量组线性无关\begin{aligned} &\text{解:设}B = (\boxed{\beta}_1, \boxed{\beta}_2, \cdots, \boxed{\beta}_n)\text{,则} \\ &\quad x_1\boxed{\beta}_1 + x_2\boxed{\beta}_2 + \cdots + x_n\boxed{\beta}_n = 0,\ (\boxed{\beta}_1, \boxed{\beta}_2, \cdots, \boxed{\beta}_n)\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = 0,\ Bx = 0 \\ &\quad\text{左乘}A,\ ABx = 0,\ Ex = 0,\ x = 0,\ Bx = 0\text{只有零解} \\ &\quad\text{故}B\text{的列向量组线性无关} \end{aligned}解:设B=(β1,β2,,βn),则x1β1+x2β2++xnβn=0, (β1,β2,,βn)x1x2xn=0, Bx=0左乘A, ABx=0, Ex=0, x=0, Bx=0只有零解B的列向量组线性无关
改:①AB=C, C可逆  ⟹  B的列向量组线性无关②AB=C, C不可逆  ⟹  B的列向量组无法判定若B=0, B的列向量组线性相关若A=(110120), B=(100100), C=(1112), B的列向量组线性无关\begin{aligned} &\text{改:} \\ &\quad\text{①} AB = C,\ C\text{可逆}\implies B\text{的列向量组线性无关} \\ &\quad\text{②} AB = C,\ C\text{不可逆}\implies B\text{的列向量组无法判定} \\ &\quad\text{若}B = 0,\ B\text{的列向量组线性相关} \\ &\quad\text{若}A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \end{pmatrix},\ B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix},\ C = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix},\ B\text{的列向量组线性无关} \\ \end{aligned}改:AB=C, C可逆B的列向量组线性无关AB=C, C不可逆B的列向量组无法判定B=0, B的列向量组线性相关A=(111200), B=100010, C=(1112), B的列向量组线性无关

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值