宏观
使用双端队列维护三元组 (l,r,x)(l,r,x)(l,r,x),表示 [l,r][l,r][l,r] 的决策点为 xxx。
中观
当扫描到第 iii 个位置的时候:
- ①进行转移
- ②在队首处弹出过老的三元组
- ③在队尾处弹出 xxx 已没有 iii 优的三元组
- ④考虑队尾的三元组,通过二分确定 ⌈\lceil⌈ xxx 更优 ⌋\rfloor⌋ 和 ⌈\lceil⌈ iii 更优 ⌋\rfloor⌋ 的分界点,并将最后一个三元组分裂为两个
- ⑤在队尾处插入以 iii 为决策点的三元组 (_,n,i)(\_,n,i)(_,n,i)
微观
②③④⑤一步一个特判。
- ①进行转移。
- ②在队首处弹出过老的三元组;注意此时队首处的三元组可能仍然覆盖了部分 iii 之后的位置,此时只能增大其 lll 而不能将其弹出。
- ③在队尾处弹出 xxx 已没有 iii 优的三元组;注意特判 ③ 操作结束后队列为空的情况,此时应直接跳到第 ⑤ 步。
- ④考虑队尾的三元组,通过二分确定 ⌈\lceil⌈ xxx 更优 ⌋\rfloor⌋ 和 ⌈\lceil⌈ iii 更优 ⌋\rfloor⌋ 的分界点,并将最后一个三元组分裂为两个;注意若 iii 在此区间中完全劣于该 xxx,则应设定分界点为三元组的右端点加 111。
- ⑤在队尾处插入以 iii 为决策点的三元组 (_,n,i)(\_,n,i)(_,n,i);需要保证分界点不超过 nnn。
代码
int l=1,r=1;
q[1]=Node{1,n,0};
for (int i=1;i<=n;i++){
f[i]=trans(q[l].pos,i);//(1)
if (q[l].r<=i) l++;
else q[l].l++;//(2)
while (calc(q[r].pos,q[r].l)>=calc(i,q[r].l)) r--;//(3)
if (l>r) q[++r].l=i+1,q[r].r=n,q[r].pos=i;//直接跳到第 5 步
else{
int k;
if (calc(q[r].pos,q[r].r)<=calc(i,q[r].r)) k=q[r].r+1;//特判
else k=binary(q[r].l,q[r].r,i,q[r].pos);//二分(4)
if (k<=n){//特判
q[r].r=k-1;
q[++r].l=k,q[r].r=n,q[r].pos=i;//插入(5)
}
}
}

本文介绍了利用双端队列优化动态规划过程中的三元组管理策略。在中观层面,详细阐述了如何进行状态转移、更新过期三元组、删除无效区间,并通过二分查找确定最优分界点。微观上,对每个步骤进行了特判处理,确保算法的正确性和效率。提供的代码展示了这种优化技术在实际问题中的应用。
2926

被折叠的 条评论
为什么被折叠?



