PCL点云库学习笔记(滤波)
点云滤波
一、使用直通滤波器
#include <iostream>
#include <pcl/point_types.h>
#include <pcl/filters/passthrough.h>
int
main(int argc, char** argv)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);
// 填充点云
cloud->width = 5;//点云的数量
cloud->height = 1;//无序点云
cloud->points.resize(cloud->width * cloud->height);
for (std::size_t i = 0; i < cloud->points.size(); ++i)
{
cloud->points[i].x = 1024 * rand() / (RAND_MAX + 1.0f);//为点云填充数据
cloud->points[i].y = 1024 * rand() / (RAND_MAX + 1.0f);
cloud->points[i].z = 1024 * rand() / (RAND_MAX + 1.0f);
}
std::cerr << "Cloud before filtering: " << std::endl;//打印所有点
for (std::size_t i = 0; i < cloud->points.size(); ++i)
std::cerr << " " << cloud->points[i].x << " "
<< cloud->points[i].y << " "
<< cloud->points[i].z << std::endl;
// Create the filtering object
pcl::PassThrough<pcl::PointXYZ> pass;//设置滤波器对象
pass.setInputCloud(cloud);//输入点云
pass.setFilterFieldName("z");//设置过滤式所需要的点云类型的z字段
pass.setFilterLimits(0.0, 500.0);//设置过滤字段的范围
//pass.setFilterLimitsNegative (true);
pass.filter(*cloud_filtered);//执行滤波
//输出滤波点云
std::cerr << "Cloud after filtering: " << std::endl;
for (std::size_t i = 0; i < cloud_filtered->points.size(); ++i)
std::cerr << " " << cloud_filtered->points[i].x << " "
<< cloud_filtered->points[i].y << " "
<< cloud_filtered->points[i].z << std::endl;
return (0);
}
二、使用VoxelGrid滤波器进行下采样
对点云数据集进行降采样,即减少点数。VoxelGrid类在输入点云数据上创建一个三维体素网格(将体素网格视为空间中的微小的三维立方体集合)。在每个体素(立方体)中,用体素中所有点的重心来表示体素内的所有点(即下采样)。 这种方法比用体素的中心逼近它们要慢一些,但是它可以更准确地表示曲面。
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/voxel_grid.h>
int main(int argc, char** argv)
{
pcl::PCLPointCloud2::Ptr cloud(new pcl::PCLPointCloud2());
pcl::PCLPointCloud2::Ptr cloud_filtered(new pcl::PCLPointCloud2());
// 读取点云
pcl::PCDReader reader;
reader.read("table_scene_lms400.p