#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define ULL unsigned long long
using namespace std;
template <typename T> int read (T &x) {x = 0; T f = 1;char tem = getchar ();while (tem < '0' || tem > '9') {if (tem == '-') f = -1;tem = getchar ();}while (tem >= '0' && tem <= '9') {x = (x << 1) + (x << 3) + tem - '0';tem = getchar ();}x *= f; return 1;}
template <typename T> void write (T x) {if (x < 0) {x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
template <typename T> T Max (T x, T y) { return x > y ? x : y; }
template <typename T> T Min (T x, T y) { return x < y ? x : y; }
template <typename T> T Abs (T x) { return x > 0 ? x : -x; }
const int Maxn = 40;
const LL Mod = 1e9 + 7;
struct Matrix {
int n, m;
LL c[Maxn + 5][Maxn + 5];
Matrix () { memset (c, 0, sizeof c); }
void init () {
for (int i = 0; i <= n; i++)
c[i][i] = 1;
}
void cpy (LL a[][Maxn + 5]) {
for (int i = 0; i < Maxn + 5; i++) {
for (int j = 0; j < Maxn + 5; j++) {
c[i][j] = a[i][j];
}
}
}
void read () {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
scanf ("%lld", &c[i][j]);
c[i][j] %= Mod;
if (c[i][j] < 0) c[i][j] += Mod;
}
}
}
void write () {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
printf ("%lld ", c[i][j]);
}
puts ("");
}
}
Matrix operator * (const Matrix x) const {
Matrix ans; ans.n = n; ans.m = x.m;
for (int i = 1; i <= ans.n; i++) {
for (int k = 1; k <= m; k++) {
for (int j = 1; j <= ans.m; j++) {
ans.c[i][j] += c[i][k] * x.c[k][j];
ans.c[i][j] %= Mod;
if (ans.c[i][j] < 0) ans.c[i][j] += Mod;
}
}
}
return ans;
}
Matrix operator + (const Matrix x) const {
Matrix ans; ans.n = n; ans.m = m;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
ans.c[i][j] = c[i][j] + x.c[i][j];
}
}
return ans;
}
Matrix operator - (const Matrix x) const {
Matrix ans; ans.n = n; ans.m = m;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
ans.c[i][j] = c[i][j] + x.c[i][j];
}
}
return ans;
}
};
LL fac[Maxn + 5], inv_fac[Maxn + 5];
void exgcd (LL a, LL b, LL &x, LL &y) {
if (b == 0) {
x = 1; y = 0;
return;
}
exgcd (b, a % b, y, x);
y -= a / b * x;
}
LL inv (LL a) {
LL x, y;
exgcd (a, Mod, x, y);
x = ((x % Mod) + Mod) % Mod;
return x;
}
void Init () {
fac[0] = 1;
for (int i = 1; i <= Maxn; i++) {
fac[i] = fac[i - 1] * i;
fac[i] %= Mod;
}
inv_fac[Maxn] = inv (fac[Maxn]);
for (int i = Maxn - 1; i >= 0; i--) {
inv_fac[i] = inv_fac[i + 1] * (i + 1) % Mod;
}
}
LL C (LL a, LL b) {
return fac[b] * inv_fac[a] % Mod * inv_fac[b - a] % Mod;
}
int n, k;
int main () {
read (n); read (k);
Init ();
Matrix a, b;
a.n = 1; a.m = b.n = b.m = k + 3;
for (int i = 1; i <= a.m; i++) {
a.c[1][i] = 1;
}
b.c[2][1] = 1;
b.c[1][2] = 1;
b.c[2][2] = 1;
b.c[3][3] = 1;
for (int j = 4; j <= b.m; j++)
for (int i = 3; i <= j; i++)
b.c[i][j] = C (i - 3, j - 3);
printf ("A:\n");
a.write ();
printf ("B:\n");
b.write ();
for (int i = 1; i <= 10; i++) {
printf ("step = %d\n", i);
a.write ();
a = a * b;
}
return 0;
}