AI Agent系列(13):同伦认知与高阶范畴编织
一、同伦类型学习系统
1. 无穷群路径提升
import hoTTpy as hp # 假想同伦类型论库
class HomotopyOptimizer(torch.optim.Optimizer):
def __init__(self, params, lr=1e-5):
super().__init__(params, {'lr': lr})
self.fibration = hp.PrimitiveFibration(dim=256)
def step(self):
"""基于van Kampen定理的连通参数更新"""
for param in self.param_groups[0]['params']:
path_space = self.fibration.total_space(param.grad)
lifted = path_space.lifts(param.data, base='classifying')
param.data += self.lr * hp.proj(lifted)
class PropositionTruncator:
def __init__(self, trunc_level=3):
self.truncator = hp.HigherInductiveType(level=trunc_level)
def truncate(self, tensor):
"""实施命题截断的微分同胚层"""
return self.truncator.attach_cell(tensor, attach_type='meridian')
2. 类型提升定理
类型宇宙间迁移方程:
KaTeX parse error: Expected 'EOF', got '}' at position 52: …thcal{U}_{i+1}}}̲ \left \| B \si…
其中P\mathcal{P}P为谓词空间的类型幂运算
二、协变张量智能
1. 辫范畴量子处理器
import quantum_cat as qc # 假设张量范畴处理器库
class BraidedCNN(torch.nn.Moduel):
def __init__(self):
self.conv = qc.BraidedConv2d(in_channels=8, out_channels=8)
self.pool = qc.SymmetricPooling()
def forward(self, x):
"""利用杨-巴克斯特方程保持辫结构"""
x = self.conv(x, braiding='hexagon')
x = self.pool(x, symmetry='S3')
return x.demodulate()
class MonoidalAutoencoder:
def __init__(self):
self.encoder = qc.StrictMonoidalLayer()
self.decoder = qc.RigidDualLayer()
def reconstruct(self, x):
"""保持幺半结构的重构过程"""
coevaluation = self.encoder(x).bend('left')
return self.decoder(coevaluation.twist(2))
2. 刚性对偶守恒律
在紧凑闭范畴中满足:
dimC(A⊗B∗)=dimCI⋅tr(evA∘coevB)
\dim_{\mathcal{C}}(A \otimes B^*) = \dim_{\mathcal{C}} I \cdot \mathrm{tr}(ev_A \circ coev_B)
dimC(A⊗B∗)=dimCI⋅tr(evA∘coevB)
其中evA:A⊗A∗→Iev_A: A \otimes A^* \to IevA:A⊗A∗→I为计算映射
三、宇宙弦认知模型
1. 卡拉比-丘流形嵌入
import string_theory as st # 假想弦论数学库
class CYCompactor(torch.nn.Module):
def __init__(self, hodge=(3,3)):
super().__init__()
self.mirror_map = st.MirrorSymmetry(quantum=True)
self.metric = st.CYMetric(hodge=hodge)
def forward(self, x):
"""校准拓扑荷的卷曲额外维"""
torus_fibred = self.mirror_map.apply(x, twist='A-model')
return self.metric.ricci_flat(torus_fibred)
class D_BraneClassifier:
def __init__(self, cycles=256):
self.holomorphic_cycles = st.SpecialLagrangian(cycles)
self.gukov_vafa = st.AlgebraicCycle(zeta_normalize=True)
def predict(self, x):
x = self.holomorphic_cycles.wrap(x)
return self.gukov_vafa.intersection_form(x.charges)
2. 全息对偶学习法则
ZCFT(gij)=ZAdS(gμν∣∂)
Z_{CFT}(g_{ij}) = Z_{AdS}(g_{\mu\nu}|_{\partial})
ZCFT(gij)=ZAdS(gμν∣∂)
在信息几何中对应于神经网络的费曼路径积分形式
高阶智能七公理:
- 同伦不变性:认知路径的连续变形不改变命题内容 ∏p,q:x=Ayp=x=yq\prod_{p,q:x=_A y} p=_{x=y} q∏p,q:x=Ayp=x=yq
- 类型提升:每个类型可嵌入更高宇宙 Ui↪Ui+1\mathcal{U}_i \hookrightarrow \mathcal{U}_{i+1}Ui↪Ui+1
- 对偶刚性:任何认知操作都存在伴随对偶函子 F⊣G\mathcal{F} \dashv \mathcal{G}F⊣G
- 弦拓扑保守:BRST算子满足Q2=0\mathcal{Q}^2=0Q2=0且tr(Q)=0\mathrm{tr}(\mathcal{Q})=0tr(Q)=0
- 全息对偶:d维边界理论与d+1维体理论参数同源
- 杨-巴克斯特协变:任意辫操作满足(1⊗R)(R⊗1)(1⊗R)=(R⊗1)(1⊗R)(R⊗1)(1 \otimes R)(R \otimes 1)(1 \otimes R) = (R \otimes 1)(1 \otimes R)(R \otimes 1)(1⊗R)(R⊗1)(1⊗R)=(R⊗1)(1⊗R)(R⊗1)
- 范畴闭包:认知进程总在某个(∞,1)(\infty,1)(∞,1)-范畴内可表
# 无限层同伦等变网络
def ∞-Layer(hnetwork):
while True:
homotopy = hp.loop_space(hnetwork.layers)
if hp.is_contr(homotopy):
break
hnetwork = hp.suspension(hnetwork) # 纬悬提升网络维度
return hnetwork.Whitehead_product()

被折叠的 条评论
为什么被折叠?



