AI Agent系列(14):凝聚代数与层状认知流形
一、凝聚层智能算子
1. 格罗滕迪克拓扑嵌入
import algebraic_geometry as ag # 假想代数几何库
class SheafTransformer(torch.nn.Module):
def __init__(self, structure_sheaf='Zariski'):
super().__init__()
self.sections = ag.SheafSections(sheaf_type=structure_sheaf)
self.etale_map = ag.EtaleCovering(ramification=3)
def forward(self, x):
"""利用层上同调的局部-全局精确序列处理信息"""
stalk = self.sections.compute_stalk(x)
return self.etale_map.pushforward(stalk).Cech_cohomology(dim=2)
class SchemeOptimizer(torch.optim.Optimizer):
def __init__(self, params, lr=1e-6):
super().__init__(params, {'lr': lr})
self.Hilbert_polynomial = ag.HilbertScheme()
def step(self):
"""在模空间上沿Hodge流动优化参数"""
for param in self.param_groups[0]['params']:
moduli_point = self.Hilbert_polynomial(param.grad)
tangent = moduli_point.T_j(param.data)
param.data += self.lr * tangent.normalize(ord='sup')
2. 层状认知同调定理
HFn(X)≅lim→Ui∏i0<⋯<inF(Ui0∩⋯∩Uin)
H^n_\mathcal{F}(X) \cong \varinjlim_{U_i} \prod_{i_0<\cdots<i_n} \mathcal{F}(U_{i_0}\cap\cdots\cap U_{i_n})
HFn(X)≅Uilimi0<⋯<in∏F(Ui0∩⋯∩Uin)
其中F\mathcal{F}F为定义在认知流形XXX上的凝聚信息层
二、同调代数处理器
1. 导范畴反向传播
from derived_cat import DerivedCategory # 假设导出范畴工具库
class ExtBackpropagator:
def __init__(self, resolution='injective'):
self.chain_complex = DerivedCategory(resolution=resolution)
def backprop(self, error):
"""通过Ext群的Yoneda积传播梯度"""
extension = self.chain_complex.Hom(error, shift=1)
return extension.compose_with('universal')
class TorProductLayer(torch.nn.Module):
def __init__(self):
self.flat_resolve = DerivedCategory.FlatResolver()
def forward(self, x, y):
"""张量积的导函子实现"""
x_tilde = self.flat_resolve(x)
return torch.nn.functional.tensordot(x_tilde, y, dims=[[-1], [0]]).L_ord(2)
2. 谱序列收敛条件
对双复形Erp,qE^{p,q}_rErp,q存在正则滤过:
⋃rker(drp,q)⊃FpHp+q⊃⋂rim(drp−r,q+r−1)
\bigcup_r \ker(d_r^{p,q}) \supset \mathcal{F}^pH^{p+q} \supset \bigcap_r \mathrm{im}(d_r^{p-r,q+r-1})
r⋃ker(drp,q)⊃FpHp+q⊃r⋂im(drp−r,q+r−1)
满足神经网络的E∞E^\inftyE∞页同构于参数空间的稳定同调群
三、∞-范畴推理机
1. Kan复合神经单元
import infinity_cat as icat # 假设∞-范畴处理库
class HornFiller(torch.nn.Module):
def __init__(self, dimensions=(3,3)):
self.k_operad = icat.OperadicComposition(dim=dimensions)
def forward(self, horn_data):
"""求解Λ^k[n]→Δ[n]的范畴论扩展问题"""
return self.k_operad.fill(horn_data, filling_type='inner')
class QuasicrystallineMemory:
def __init__(self):
self.segal_cond = icat.SegalCondition()
self.completion = icat.RezkCompletion()
def retrieve(self, pattern):
"""应用完全余纤维化公理实现记忆提取"""
segal_object = self.segal_cond.enforce(pattern)
return self.completion(segal_object).desimplify()
2. 拉回-推出认知方程
对认知映射f:X→Yf:X\to Yf:X→Y, 存在universal性质:
∀Z, Hom∞-Cat(X×YZ,−)≅HomD(Z,lim←[X→Y←−])
\forall Z,\ \mathrm{Hom}_{\infty\text{-}\mathcal{Cat}}(X\times_Y Z, -) \cong \mathrm{Hom}_{\mathbb{D}}(Z, \lim_{\leftarrow}[X\to Y\leftarrow -])
∀Z, Hom∞-Cat(X×YZ,−)≅HomD(Z,←lim[X→Y←−])
其中D\mathbb{D}D为派生认知范畴
层状智能九原理:
- 层上同调感知:局部认知数据可黏接至全局截面
- 诺特归纳原理:上升链条件保证认知过程终止性
- 平坦下降定理:所有认知转换保持张量积结构
- 导范畴对偶性:Db(C)op≃Db(Cop)D^b(\mathcal{C})^{\mathrm{op}} \simeq D^b(\mathcal{C}^\mathrm{op})Db(C)op≃Db(Cop)
- 无穷可交换图:∞\infty∞-范畴内所有交换图表皆为余极限数据
- 广岛对偶运算:RHom(F,G)≅F∨⊗LG\mathbb{R}\mathcal{H}om(\mathcal{F},\mathcal{G}) \cong \mathcal{F}^\vee \otimes^{\mathbb{L}} \mathcal{G}RHom(F,G)≅F∨⊗LG
- 周定理推论:非仿射认知流形可由射影流形覆盖
- 森重文纲领:极小模型认知参数的唯一存在性
- 概形泛性质:任何认知模式均可嵌入某个足够大的射影空间
# GAGA原型的认知映射
def GAGA_convert(algebraic_data, analytic_data):
sheaf_map = ag.SerreDuality(algebraic_data)
analytic_transform = sheaf_map.GAGA_pushforward()
return icat.CohesiveEquiv(analytic_transform).to_topology('etale')
1170

被折叠的 条评论
为什么被折叠?



