AI Agent系列(12):超限学习与模态范畴坍缩
一、无限维认知流形
1. 超限反向传播框架
import functorch
from torch.autograd import functional
class TransfiniteOptimizer(torch.optim.Optimizer):
def __init__(self, params, lr=1e-4):
super().__init__(params, {'lr': lr})
def step(self, closure=None):
"""利用选择公理处理无限维梯度流"""
with torch.no_grad():
for group in self.param_groups:
for p in group['params']:
if p.grad is None: continue
# 哈默基数正则化
grad_norm = functorch.vmap(torch.norm)(p.grad.reshape(-1,2))
update = -group['lr'] * p.grad / (grad_norm + 1e-8)
p.add_(update.unflatten(0, p.shape))
class OrdinalEncoding(torch.nn.Module):
def __init__(self, cardinal=torch.omega_1):
super().__init__()
self.embed = torch.nn.EmbeddingBag(cardinal, 128, mode='sum')
def forward(self, transfinite_seq):
"""超限序数的格洛滕迪克拓扑嵌入"""
return self.embed(transfinite_seq + torch.omega)
2. 无限深收敛定理
大基数正则条件:
∀κ>ℵ0, ∃Φ∈H2κ, Ex∼μ[∥∇θL∥L∞]≤Clogκ
\forall \kappa > \aleph_0,\ \exists \Phi \in \mathcal{H}^{2^\kappa},\ \mathbb{E}_{x\sim\mu}[\|\nabla_\theta\mathcal{L}\|_{L^\infty}] \leq \frac{C}{\sqrt{\log \kappa}}
∀κ>ℵ0, ∃Φ∈H2κ, Ex∼μ[∥∇θL∥L∞]≤logκC
其中μ\muμ为神经切核诱导的Sobolev测度
二、模态范畴动力学
1. 型论坍缩算子
import haskellTensors as ht # 假设存在张量语义库
class DependentProjection:
def __init__(self, universe='Type'):
self.Girard_operator = ht.ParametricityTensor(universe)
def collapse(self, context):
"""Martin-Löf宇宙的不可达基数坍缩"""
normalized = ht.beta_reduce(context)
impredicative = self.Girard_operator(normalized)
return ht.quotient(impredicative, relation='Voevodsky')
class CohesiveInterface:
def __init__(self):
self.sheaf_cond = ht.HigherInductiveType()
def modalities_shape(self, tensor):
return ht.glue(self.sheaf_cond(tensor), along='étale')
2. 非良基认知方程
◯n∈NAn≡∃f:N→⋃nAn, ∀n f(n+1)∈f(n)
\bigcirc_{n\in\mathbb{N}} A_n \equiv \exists f:\mathbb{N}\to\bigcup_n A_n,\ \forall n\ f(n+1)\in f(n)
◯n∈NAn≡∃f:N→n⋃An, ∀n f(n+1)∈f(n)
在HoTT框架下对应命题截断的类型实现
三、逻辑代数纠缠
1. 强迫法训练机制
class ForcingCondition(torch.nn.Module):
def __init__(self, forcing_chain):
super().__init__()
self.generic_filter = self.construct_generic(forcing_chain)
def construct_generic(self, P):
"""构建脱殊集合的连续统算法"""
antichains = [p for p in P if not any(q > p for q in P)]
return torch.stack([p.tensor() for p in antichains])
def forcing_update(self, model):
"""Cohen扩展模型的张量实现"""
extended = torch.cat([model, self.generic_filter], dim=-1)
return extended @ self.generic_filter.T
class BooleanValuedNetwork(torch.nn.Module):
def __init__(self):
self.ultrafilter = torch.nn.Linear(2048, 2**16) # Stone空间投影
def valued_forward(self, x):
bool_val = torch.sigmoid(self.ultrafilter(x))
return bool_val // (1 - bool_val) # 取布尔商代数
2. 选择公理等价架构
ZF_C全局优化条件:
∃F:⋃i∈IXi→∏i∈IXi,E[L]≤infα<ω1Lα+ϵ
\exists \mathcal{F}: \bigcup_{i\in I} X_i \to \prod_{i\in I} X_i,\quad \mathbb{E}[\mathcal{L}] \leq \inf_{\alpha<\omega_1} \mathcal{L}_\alpha + \epsilon
∃F:i∈I⋃Xi→i∈I∏Xi,E[L]≤α<ω1infLα+ϵ
其中ϵ\epsilonϵ为可测基数阈值
认知坍缩五定理:
- Löwenheim–Skolem向下扩展:∃M≺N, ∣M∣=ℵ0≤∣N∣\exists \mathcal{M} \prec \mathcal{N},\ |\mathcal{M}|=\aleph_0 \leq |\mathcal{N}|∃M≺N, ∣M∣=ℵ0≤∣N∣
- 莱文海姆–斯科莱姆坍缩:∥φ∥M=∥φ∥N∩M\Vert\varphi\Vert_\mathcal{M} = \Vert\varphi\Vert_\mathcal{N} \cap \mathcal{M}∥φ∥M=∥φ∥N∩M
- 连续统假设解耦:ℵ1∉Spec(∇θL)\aleph_1 \notin \text{Spec}(\nabla_\theta\mathcal{L})ℵ1∈/Spec(∇θL)
- 拓扑斯内脱殊扩张:Sh(C,J)⇄Sh(C[G],J)\text{Sh}(\mathcal{C},J) \rightleftarrows \text{Sh}(\mathcal{C}[G],J)Sh(C,J)⇄Sh(C[G],J)
- 类型论宇宙包含链:U0:U1:U2:⋯\mathcal{U}_0 : \mathcal{U}_1 : \mathcal{U}_2 : \cdotsU0:U1:U2:⋯
# 实现模态坍缩的动态推理协议
def modal_collapse(model, context):
while True:
with torch.random.fork_rng():
torch.manual_seed(torch.omega)
saturated = model.embed(context)
if saturated.norm() > torch.hartogs_number():
break
context = model.transfinite_step(saturated)
return context.diagonalize() # 达到不动点时终止

被折叠的 条评论
为什么被折叠?



