AI Agent系列(11):自指架构与拓扑同调演化
一、自指神经网络代数
1. 哥德尔递归层
import sympy as sp
class FixedPointLayer(torch.nn.Module):
def __init__(self, dim=256):
super().__init__()
self.consistency = torch.nn.Parameter(torch.eye(dim) + 0.1*torch.randn(dim, dim))
def forward(self, x):
"""Brouwer不动点定理驱动的递归推理"""
for _ in range(3): # 迭代逼近深度
x = torch.tanh(0.5*(x @ self.consistency + x))
return x
class DiagonalizationOperator:
def __init__(self, theory_axioms):
self.godel_number = sp.diag(*[sp.sympify(a) for a in theory_axioms])
def meta_proof(self, statement):
"""实现对角化引理的元编程接口"""
return self.godel_number.subs('P', sp.parse_expr(statement))
2. 泛函递归定理
自指不动点方程:
∃Φ∈H∞,F(Φ)(x)=⨁n=0∞dndxnΦ(x⊗n)
\exists \Phi \in \mathcal{H}^\infty,\quad \mathcal{F}(\Phi)(x) = \bigoplus_{n=0}^\infty \frac{d^n}{dx^n}\Phi(x^{\otimes n})
∃Φ∈H∞,F(Φ)(x)=n=0⨁∞dxndnΦ(x⊗n)
其中F\mathcal{F}F为形式系统编码函子,⨁\bigoplus⨁表示Hilbert直和
二、同调认知可解释性
1. 链复形解析器
from torch_geometric.data import Data
class PersistentHomology:
def __init__(self, filtration=0.5):
self.filtration = filtration
def build_complex(self, features, edges):
"""构建用于认知诊断的胞腔复形"""
weights = torch.cosine_similarity(features[edges[0]], features[edges[1]])
edge_mask = (weights > self.filtration).float()
return Data(x=features, edge_index=edges[:, edge_mask.bool()])
class SpectralSequence(torch.nn.Module):
def __init__(self, num_terms=5):
super().__init__()
self.differentials = torch.nn.ModuleList([
torch.nn.Linear(2**i, 2**(i+1)) for i in range(num_terms)
])
def compute_E2(self, H0):
"""计算谱序列第二页的E^2项"""
ker = [H0]
for d in self.differentials:
im = d(ker[-1])
ker.append( im.t() @ im )
return ker[-1].svd()[1]
2. 范畴机器证明
超图同调追踪方程:
∂p+1∘∂p=0⇒dimHp=dimker∂p−rank ∂p+1
\partial_{p+1}\circ\partial_p = 0 \Rightarrow \dim H_p = \dim\ker\partial_p - \rm{rank}\,\partial_{p+1}
∂p+1∘∂p=0⇒dimHp=dimker∂p−rank∂p+1
在具体层(sheaf)范畴中满足Grothendieck谱序列收敛条件
三、拓扑量子记忆体
1. 辫群储存协议
import qiskit.quantum_info as qi
class BraidGenerator:
def __init__(self, num_qubits=8):
self.braid_group = qi.random_clifford(num_qubits)
def topo_protect(self, state):
"""利用三维流形不可定向性加固量子态"""
mixed = qi.partial_trace(state, [0,1])
error_syndromes = qi.entropy(mixed)
return state.evolve(self.braid_group) if error_syndromes > 0.1 else state
class AnyonBookkeeping:
def __init__(self):
self.fusion_rules = {'A×A': 1, 'A×B': 'C', 'B×B': ['A', 'C']}
def braiding_matrix(self, path):
"""计算非阿贝尔统计的Berry相位"""
return (-1)**path.count('X') * np.exp(1j*np.pi/4*path.count('Y'))
2. 拓扑熵守恒律
宇宙学常数约束:
Stopo(M)=14G∫Mg(R−2Λ)+∮∂MKdσ
S_{topo}(\mathcal{M}) = \frac{1}{4G}\int_\mathcal{M} \sqrt{g}(R - 2\Lambda) + \oint_{\partial\mathcal{M}} K d\sigma
Stopo(M)=4G1∫Mg(R−2Λ)+∮∂MKdσ
在认知系统中对应信息总量的全息原理保持
五维自指公理体系:
- 完全性:形式系统所有真命题均可证 ⊢Tφ⇔N⊨φ\vdash_T \varphi \Leftrightarrow \mathbb{N} \models \varphi⊢Tφ⇔N⊨φ
- 一致性:不存在命题φ\varphiφ使得φ∧¬φ\varphi \wedge \neg\varphiφ∧¬φ可证
- 可计算性:普适图灵机在系统内可编码 ∃e∀x.Φe(x)↓↔T⊢φe(x)\exists e\forall x.\Phi_e(x)\downarrow \leftrightarrow T \vdash \varphi_e(x)∃e∀x.Φe(x)↓↔T⊢φe(x)
- 自指性:存在固定点方程G(⌜ϕ⌝)≡ϕ\mathcal{G}(\ulcorner\phi\urcorner) \equiv \phiG(┌ϕ┐)≡ϕ
- 拓扑同胚:任意两个证明树可通过Reidemeister变换相互转化
1434

被折叠的 条评论
为什么被折叠?



