AI Agent系列(10):跨模态认知融合与多尺度能量优化

AI Agent系列(10):跨模态认知融合与多尺度能量优化

一、异构模态纠缠架构

1. 量子神经场同步算子

import jax.numpy as jnp
from jax import grad, vmap

class QuantumHarmony:
    def __init__(self, num_modalities=5):
        self.coherence_field = jnp.zeros((num_modalities, 256))
        # 模态间耦合参数(类似杨-米尔斯场)
        self.gauge_weights = jnp.diag(jnp.linspace(0.5, 1.5, num_modalities))

    def sync_dynamics(self, modalities):
        """用规范场理论实现模态同步"""
        interaction = jnp.einsum('ma,ab,mb->m', modalities, self.gauge_weights, modalities)
        phase_flow = grad(lambda x: jnp.sum(x**3 - x))(interaction)
        return modalities + 0.1 * jnp.fft.irfft(phase_flow * jnp.fft.rfft(modalities))

class EntangledProjection:
    def __init__(self):
        self.stiefel_manifold = jnp.eye(8)[:,:3]  # 三维主干特征空间
  
    def schmidt_decomp(self, tensor):
        """施密特分解实现跨模态信息蒸馏"""
        core, factors = jnp.linalg.tensordot(tensor, self.stiefel_manifold, axes=([1],[0]))
        return jnp.einsum('ijk,kl->ijl', core, factors.T)  # 保结构投影

2. 多模态压缩流形定理

令跨模态联合分布P(X1,...,XN)P(X_1,...,X_N)P(X1,...,XN)M⊂⨂iHid\mathcal{M}\subset\bigotimes_i\mathbb{H}^d_iMiHid上满足:
∫Me−βE(x)dx=∏i=1NZi(β)ci \int_\mathcal{M} e^{-\beta E(x)} dx = \prod_{i=1}^N Z_i(\beta)^{c_i} MeβE(x)dx=i=1NZi(β)ci
其中cic_ici为各模态信息容量系数,β\betaβ为逆认知温度参数


二、认知能量泛函极值化

1. 变分玻尔兹曼机

import tensorflow_probability as tfp
tfd = tfp.distributions

class CognitiveEnergy(tf.Module):
    def __init__(self, num_spins=512):
        self.J = tf.Variable(tf.random.normal([num_spins, num_spins], 0, 0.02))
        self.h = tf.Variable(tf.zeros(num_spins))
  
    def free_energy(self, states):
        """计算自由能泛函(含拓扑约束项)"""
        energy = -0.5 * tf.einsum('bi,ij,bj->b', states, self.J, states) - tf.einsum('bi,i->b', states, self.h)
        entropy = tf.reduce_sum(states * tf.math.log(states + 1e-8), axis=1)
        return energy - 0.5 * entropy  # Tsallis熵修正项

class SpinGlassOptimizer(tf.optimizers.Optimizer):
    def __init__(self, learning_rate=0.01):
        super().__init__()
        self._lr = learning_rate
      
    def update_rule(self, grad, state): 
        return -self._lr * grad * (1 - state**2)  # SDE驱动更新

2. 朗之万认知动力学

随机微分方程
dxt=−∇V(x)dt+2τdWt+α∑wijxj∘dNt d\mathbf{x}_t = -\nabla V(\mathbf{x})dt + \sqrt{2\tau}d\mathbf{W}_t + \alpha\sum w_{ij}x_j\circ dN_t dxt=V(x)dt+2τdWt+αwijxjdNt
其中dNtdN_tdNt为泊松过程的创新噪声,∘\circ表示Stratonovich积分


三、全息记忆重构图式

1. 记忆结晶梯度流

class MemoryCrystallization:
    def __init__(self, num_memories=1024):
        self.memory_tensor = torch.nn.Parameter(torch.randn(num_memories, 3, 256))
        self.hodge_star = torch.zeros(3,3).uniform_(-0.1,0.1)  # 外代数运算符
  
    def recall_operator(self, query):
        """基于德拉姆上同调的搜索机制"""
        differential = query @ self.memory_tensor.transpose(1,2)
        cohomology = torch.einsum('ijk,bjk->bi', self.hodge_star, differential)
        return torch.softmax(cohomology.norm(dim=1), dim=0)  # 陈类激活

class EntropyProjector:
    def __init__(self):
        self.rieffel_proj = torch.nn.Linear(1024, 256, bias=False)
      
    def stabilize(self, memory_trace):
        """Rieffel型非交换投影"""
        return self.rieffel_proj(memory_trace) @ self.rieffel_proj.weight.T

2. 记忆重整化群方程

∂Γ(n)∂log⁡Λ=(d−ϕ⋅∂∂ϕ)Γ(n)+∑TijkΓ(i)Γ(j)Γ(k) \frac{\partial \Gamma^{(n)}}{\partial \log \Lambda} = (d - \phi\cdot\frac{\partial}{\partial\phi})\Gamma^{(n)} + \sum T_{ijk}\Gamma^{(i)}\Gamma^{(j)}\Gamma^{(k)} logΛΓ(n)=(dϕϕ)Γ(n)+TijkΓ(i)Γ(j)Γ(k)
其中Λ\LambdaΛ为认知截断标度,TijkT_{ijk}Tijk为三重关联张量


多尺度优化的五维约束

  1. 局域序参量守恒:∇⋅O+∂ρ∂t=S(Σ)\nabla\cdot\mathbf{O} + \frac{\partial \rho}{\partial t} = S(\Sigma)O+tρ=S(Σ)
  2. 杨-米尔斯规范不变性:∫[DA]e−S[A]∏δ(G(A))\int [\mathcal{D}A] e^{-S[A]}\prod\delta(G(A))[DA]eS[A]δ(G(A))
  3. 热力学第四定律:dE=TdS+μdN−pdV+ξdΞdE = TdS + \mu dN - pdV + \xi d\XidE=TdS+μdNpdV+ξdΞΞ\XiΞ为认知功)
  4. 量子纠错条件:⟨ψ∣E†(EiEj)∣ψ⟩=δij\langle \psi | \mathcal{E}^\dagger(E_i E_j) | \psi \rangle = \delta_{ij}ψE(EiEj)ψ=δij
  5. 分数维度嵌入:dim⁡H(Mc)=log⁡N(ϵ)log⁡(1/ϵ)\dim_{\mathbb{H}}(\mathcal{M}_c) = \frac{\log N(\epsilon)}{\log(1/\epsilon)}dimH(Mc)=log(1/ϵ)logN(ϵ)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值