AI Agent系列(10):跨模态认知融合与多尺度能量优化
一、异构模态纠缠架构
1. 量子神经场同步算子
import jax.numpy as jnp
from jax import grad, vmap
class QuantumHarmony:
def __init__(self, num_modalities=5):
self.coherence_field = jnp.zeros((num_modalities, 256))
# 模态间耦合参数(类似杨-米尔斯场)
self.gauge_weights = jnp.diag(jnp.linspace(0.5, 1.5, num_modalities))
def sync_dynamics(self, modalities):
"""用规范场理论实现模态同步"""
interaction = jnp.einsum('ma,ab,mb->m', modalities, self.gauge_weights, modalities)
phase_flow = grad(lambda x: jnp.sum(x**3 - x))(interaction)
return modalities + 0.1 * jnp.fft.irfft(phase_flow * jnp.fft.rfft(modalities))
class EntangledProjection:
def __init__(self):
self.stiefel_manifold = jnp.eye(8)[:,:3] # 三维主干特征空间
def schmidt_decomp(self, tensor):
"""施密特分解实现跨模态信息蒸馏"""
core, factors = jnp.linalg.tensordot(tensor, self.stiefel_manifold, axes=([1],[0]))
return jnp.einsum('ijk,kl->ijl', core, factors.T) # 保结构投影
2. 多模态压缩流形定理
令跨模态联合分布P(X1,...,XN)P(X_1,...,X_N)P(X1,...,XN)在M⊂⨂iHid\mathcal{M}\subset\bigotimes_i\mathbb{H}^d_iM⊂⨂iHid上满足:
∫Me−βE(x)dx=∏i=1NZi(β)ci
\int_\mathcal{M} e^{-\beta E(x)} dx = \prod_{i=1}^N Z_i(\beta)^{c_i}
∫Me−βE(x)dx=i=1∏NZi(β)ci
其中cic_ici为各模态信息容量系数,β\betaβ为逆认知温度参数
二、认知能量泛函极值化
1. 变分玻尔兹曼机
import tensorflow_probability as tfp
tfd = tfp.distributions
class CognitiveEnergy(tf.Module):
def __init__(self, num_spins=512):
self.J = tf.Variable(tf.random.normal([num_spins, num_spins], 0, 0.02))
self.h = tf.Variable(tf.zeros(num_spins))
def free_energy(self, states):
"""计算自由能泛函(含拓扑约束项)"""
energy = -0.5 * tf.einsum('bi,ij,bj->b', states, self.J, states) - tf.einsum('bi,i->b', states, self.h)
entropy = tf.reduce_sum(states * tf.math.log(states + 1e-8), axis=1)
return energy - 0.5 * entropy # Tsallis熵修正项
class SpinGlassOptimizer(tf.optimizers.Optimizer):
def __init__(self, learning_rate=0.01):
super().__init__()
self._lr = learning_rate
def update_rule(self, grad, state):
return -self._lr * grad * (1 - state**2) # SDE驱动更新
2. 朗之万认知动力学
随机微分方程:
dxt=−∇V(x)dt+2τdWt+α∑wijxj∘dNt
d\mathbf{x}_t = -\nabla V(\mathbf{x})dt + \sqrt{2\tau}d\mathbf{W}_t + \alpha\sum w_{ij}x_j\circ dN_t
dxt=−∇V(x)dt+2τdWt+α∑wijxj∘dNt
其中dNtdN_tdNt为泊松过程的创新噪声,∘\circ∘表示Stratonovich积分
三、全息记忆重构图式
1. 记忆结晶梯度流
class MemoryCrystallization:
def __init__(self, num_memories=1024):
self.memory_tensor = torch.nn.Parameter(torch.randn(num_memories, 3, 256))
self.hodge_star = torch.zeros(3,3).uniform_(-0.1,0.1) # 外代数运算符
def recall_operator(self, query):
"""基于德拉姆上同调的搜索机制"""
differential = query @ self.memory_tensor.transpose(1,2)
cohomology = torch.einsum('ijk,bjk->bi', self.hodge_star, differential)
return torch.softmax(cohomology.norm(dim=1), dim=0) # 陈类激活
class EntropyProjector:
def __init__(self):
self.rieffel_proj = torch.nn.Linear(1024, 256, bias=False)
def stabilize(self, memory_trace):
"""Rieffel型非交换投影"""
return self.rieffel_proj(memory_trace) @ self.rieffel_proj.weight.T
2. 记忆重整化群方程
∂Γ(n)∂logΛ=(d−ϕ⋅∂∂ϕ)Γ(n)+∑TijkΓ(i)Γ(j)Γ(k)
\frac{\partial \Gamma^{(n)}}{\partial \log \Lambda} = (d - \phi\cdot\frac{\partial}{\partial\phi})\Gamma^{(n)} + \sum T_{ijk}\Gamma^{(i)}\Gamma^{(j)}\Gamma^{(k)}
∂logΛ∂Γ(n)=(d−ϕ⋅∂ϕ∂)Γ(n)+∑TijkΓ(i)Γ(j)Γ(k)
其中Λ\LambdaΛ为认知截断标度,TijkT_{ijk}Tijk为三重关联张量
多尺度优化的五维约束:
- 局域序参量守恒:∇⋅O+∂ρ∂t=S(Σ)\nabla\cdot\mathbf{O} + \frac{\partial \rho}{\partial t} = S(\Sigma)∇⋅O+∂t∂ρ=S(Σ)
- 杨-米尔斯规范不变性:∫[DA]e−S[A]∏δ(G(A))\int [\mathcal{D}A] e^{-S[A]}\prod\delta(G(A))∫[DA]e−S[A]∏δ(G(A))
- 热力学第四定律:dE=TdS+μdN−pdV+ξdΞdE = TdS + \mu dN - pdV + \xi d\XidE=TdS+μdN−pdV+ξdΞ (Ξ\XiΞ为认知功)
- 量子纠错条件:⟨ψ∣E†(EiEj)∣ψ⟩=δij\langle \psi | \mathcal{E}^\dagger(E_i E_j) | \psi \rangle = \delta_{ij}⟨ψ∣E†(EiEj)∣ψ⟩=δij
- 分数维度嵌入:dimH(Mc)=logN(ϵ)log(1/ϵ)\dim_{\mathbb{H}}(\mathcal{M}_c) = \frac{\log N(\epsilon)}{\log(1/\epsilon)}dimH(Mc)=log(1/ϵ)logN(ϵ)
1109

被折叠的 条评论
为什么被折叠?



