随机微分方程(SDE)到 Fokker-Planck 方程的推导

随机微分方程(SDE)到 Fokker-Planck 方程的推导

1. 随机微分方程

考虑一维 Itô 型随机微分方程(SDE):
d X t = a ( X t , t )   d t + b ( X t , t )   d B t , X 0 = x 0 , dX_t = a(X_t, t)\,dt + b(X_t, t)\,dB_t, \qquad X_0 = x_0, dXt=a(Xt,t)dt+b(Xt,t)dBt,X0=x0,
其中:
a ( x , t ) a(x,t) a(x,t) 为漂移系数(drift coefficient), b ( x , t ) b(x,t) b(x,t) 为扩散系数(diffusion coefficient), B t B_t Bt 为标准布朗运动。

p ( x , t ) p(x,t) p(x,t) 为随机变量 X t X_t Xt 的概率密度函数,即
P ( X t ∈ d x ) = p ( x , t )   d x . \mathbb{P}(X_t \in dx) = p(x,t)\,dx. P(Xtdx)=p(x,t)dx.

我们的目标是推导 p ( x , t ) p(x,t) p(x,t) 所满足的偏微分方程——即 Fokker–Planck 方程

2. 测试函数方法

取任意光滑紧支撑测试函数 ϕ ∈ C c ∞ ( R ) \phi \in C_c^\infty(\mathbb{R}) ϕCc(R),考虑期望:
E [ ϕ ( X t ) ] = ∫ − ∞ ∞ ϕ ( x ) p ( x , t )   d x . \mathbb{E}[\phi(X_t)] = \int_{-\infty}^{\infty} \phi(x) p(x,t)\,dx. E[ϕ(Xt)]=ϕ(x)p(x,t)dx.

对时间求导,左边为:
d d t E [ ϕ ( X t ) ] = ∫ − ∞ ∞ ϕ ( x ) ∂ p ∂ t ( x , t )   d x . (1) \frac{d}{dt} \mathbb{E}[\phi(X_t)] = \int_{-\infty}^{\infty} \phi(x) \frac{\partial p}{\partial t}(x,t)\,dx. \tag{1} dtdE[ϕ(Xt)]=ϕ(x)tp(x,t)dx.(1)

另一方面,对 ϕ ( X t ) \phi(X_t) ϕ(Xt) 应用 Itô 引理:
d ϕ ( X t ) = ϕ ′ ( X t )   d X t + 1 2 ϕ ′ ′ ( X t )   ( d X t ) 2 . d\phi(X_t) = \phi'(X_t)\,dX_t + \frac{1}{2} \phi''(X_t)\,(dX_t)^2. dϕ(Xt)=ϕ(Xt)dXt+21ϕ′′(Xt)(dXt)2.

将 SDE d X t = a ( X t , t )   d t + b ( X t , t )   d B t dX_t = a(X_t,t)\,dt + b(X_t,t)\,dB_t dXt=a(Xt,t)dt+b(Xt,t)dBt 代入,并利用 Itô 微积分规则:
( d t ) 2 = d t   d B t = 0 , ( d B t ) 2 = d t , (dt)^2 = dt\,dB_t = 0, \qquad (dB_t)^2 = dt, (dt)2=dtdBt=0,(dBt)2=dt,
可得
( d X t ) 2 = b 2 ( X t , t )   d t + o ( d t ) . (dX_t)^2 = b^2(X_t, t)\,dt + o(dt). (dXt)2=b2(Xt,t)dt+o(dt).

因此,
d ϕ ( X t ) = ϕ ′ ( X t ) [ a ( X t , t )   d t + b ( X t , t )   d B t ] + 1 2 ϕ ′ ′ ( X t ) b 2 ( X t , t )   d t . d\phi(X_t) = \phi'(X_t)\big[ a(X_t,t)\,dt + b(X_t,t)\,dB_t \big] + \frac{1}{2} \phi''(X_t) b^2(X_t,t)\,dt. dϕ(Xt)=ϕ(Xt)[a(Xt,t)dt+b(Xt,t)dBt]+21ϕ′′(Xt)b2(Xt,t)dt.

取期望(注意 E [ d B t ] = 0 \mathbb{E}[dB_t] = 0 E[dBt]=0):
d d t E [ ϕ ( X t ) ] = E  ⁣ [ a ( X t , t ) ϕ ′ ( X t ) + 1 2 b 2 ( X t , t ) ϕ ′ ′ ( X t ) ] . (2) \frac{d}{dt} \mathbb{E}[\phi(X_t)] = \mathbb{E}\!\left[ a(X_t,t) \phi'(X_t) + \frac{1}{2} b^2(X_t,t) \phi''(X_t) \right]. \tag{2} dtdE[ϕ(Xt)]=E[a(Xt,t)ϕ(Xt)+21b2(Xt,t)ϕ′′(Xt)].(2)

将 (2) 写成积分形式:
d d t ∫ − ∞ ∞ ϕ ( x ) p ( x , t )   d x = ∫ − ∞ ∞ [ a ( x , t ) ϕ ′ ( x ) + 1 2 b 2 ( x , t ) ϕ ′ ′ ( x ) ] p ( x , t )   d x . (3) \frac{d}{dt} \int_{-\infty}^{\infty} \phi(x) p(x,t)\,dx = \int_{-\infty}^{\infty} \left[ a(x,t) \phi'(x) + \frac{1}{2} b^2(x,t) \phi''(x) \right] p(x,t)\,dx. \tag{3} dtdϕ(x)p(x,t)dx=[a(x,t)ϕ(x)+21b2(x,t)ϕ′′(x)]p(x,t)dx.(3)

对右边两项分别进行分部积分。由于 ϕ \phi ϕ 紧支撑,边界项为零,故:
∫ a ( x , t ) ϕ ′ ( x ) p ( x , t )   d x = − ∫ ϕ ( x ) ∂ ∂ x  ⁣ ( a ( x , t ) p ( x , t ) )   d x , \int a(x,t) \phi'(x) p(x,t)\,dx = -\int \phi(x) \frac{\partial}{\partial x}\!\big( a(x,t) p(x,t) \big)\,dx, a(x,t)ϕ(x)p(x,t)dx=ϕ(x)x(a(x,t)p(x,t))dx,
∫ 1 2 b 2 ( x , t ) ϕ ′ ′ ( x ) p ( x , t )   d x = ∫ ϕ ( x ) ∂ 2 ∂ x 2  ⁣ ( 1 2 b 2 ( x , t ) p ( x , t ) )   d x . \int \frac{1}{2} b^2(x,t) \phi''(x) p(x,t)\,dx = \int \phi(x) \frac{\partial^2}{\partial x^2}\!\left( \frac{1}{2} b^2(x,t) p(x,t) \right)\,dx. 21b2(x,t)ϕ′′(x)p(x,t)dx=ϕ(x)x22(21b2(x,t)p(x,t))dx.

代入 (3) 并与 (1) 比较,得:
∫ − ∞ ∞ ϕ ( x ) ∂ p ∂ t ( x , t )   d x = ∫ − ∞ ∞ ϕ ( x ) [ − ∂ ∂ x  ⁣ ( a ( x , t ) p ( x , t ) ) + ∂ 2 ∂ x 2  ⁣ ( 1 2 b 2 ( x , t ) p ( x , t ) ) ] d x . \int_{-\infty}^{\infty} \phi(x) \frac{\partial p}{\partial t}(x,t)\,dx = \int_{-\infty}^{\infty} \phi(x) \left[ - \frac{\partial}{\partial x}\!\big( a(x,t) p(x,t) \big) + \frac{\partial^2}{\partial x^2}\!\left( \frac{1}{2} b^2(x,t) p(x,t) \right) \right] dx. ϕ(x)tp(x,t)dx=ϕ(x)[x(a(x,t)p(x,t))+x22(21b2(x,t)p(x,t))]dx.

由于 ϕ ∈ C c ∞ ( R ) \phi \in C_c^\infty(\mathbb{R}) ϕCc(R) 任意,由变分引理(fundamental lemma of calculus of variations),被积函数必须几乎处处相等。因此,

∂ p ∂ t ( x , t ) = − ∂ ∂ x  ⁣ ( a ( x , t ) p ( x , t ) ) + ∂ 2 ∂ x 2  ⁣ ( 1 2 b 2 ( x , t ) p ( x , t ) ) \boxed{ \frac{\partial p}{\partial t}(x,t) = -\frac{\partial}{\partial x}\!\big( a(x,t) p(x,t) \big) + \frac{\partial^2}{\partial x^2}\!\left( \frac{1}{2} b^2(x,t) p(x,t) \right) } tp(x,t)=x(a(x,t)p(x,t))+x22(21b2(x,t)p(x,t))

此即 Fokker–Planck 方程(又称 前向 Kolmogorov 方程)。

3. 特例:热方程

若取 a ( x , t ) ≡ 0 a(x,t) \equiv 0 a(x,t)0 b ( x , t ) ≡ 2 D b(x,t) \equiv \sqrt{2D} b(x,t)2D D > 0 D > 0 D>0 为常数),则 SDE 为:
d X t = 2 D   d B t , dX_t = \sqrt{2D}\,dB_t, dXt=2D dBt,
对应的 Fokker–Planck 方程为:
∂ p ∂ t = D ∂ 2 p ∂ x 2 , \frac{\partial p}{\partial t} = D \frac{\partial^2 p}{\partial x^2}, tp=Dx22p,
即经典的 热传导方程(或扩散方程)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值