随机微分方程(SDE)到 Fokker-Planck 方程的推导
1. 随机微分方程
考虑一维 Itô 型随机微分方程(SDE):
d
X
t
=
a
(
X
t
,
t
)
d
t
+
b
(
X
t
,
t
)
d
B
t
,
X
0
=
x
0
,
dX_t = a(X_t, t)\,dt + b(X_t, t)\,dB_t, \qquad X_0 = x_0,
dXt=a(Xt,t)dt+b(Xt,t)dBt,X0=x0,
其中:
a
(
x
,
t
)
a(x,t)
a(x,t) 为漂移系数(drift coefficient),
b
(
x
,
t
)
b(x,t)
b(x,t) 为扩散系数(diffusion coefficient),
B
t
B_t
Bt 为标准布朗运动。
设
p
(
x
,
t
)
p(x,t)
p(x,t) 为随机变量
X
t
X_t
Xt 的概率密度函数,即
P
(
X
t
∈
d
x
)
=
p
(
x
,
t
)
d
x
.
\mathbb{P}(X_t \in dx) = p(x,t)\,dx.
P(Xt∈dx)=p(x,t)dx.
我们的目标是推导 p ( x , t ) p(x,t) p(x,t) 所满足的偏微分方程——即 Fokker–Planck 方程。
2. 测试函数方法
取任意光滑紧支撑测试函数
ϕ
∈
C
c
∞
(
R
)
\phi \in C_c^\infty(\mathbb{R})
ϕ∈Cc∞(R),考虑期望:
E
[
ϕ
(
X
t
)
]
=
∫
−
∞
∞
ϕ
(
x
)
p
(
x
,
t
)
d
x
.
\mathbb{E}[\phi(X_t)] = \int_{-\infty}^{\infty} \phi(x) p(x,t)\,dx.
E[ϕ(Xt)]=∫−∞∞ϕ(x)p(x,t)dx.
对时间求导,左边为:
d
d
t
E
[
ϕ
(
X
t
)
]
=
∫
−
∞
∞
ϕ
(
x
)
∂
p
∂
t
(
x
,
t
)
d
x
.
(1)
\frac{d}{dt} \mathbb{E}[\phi(X_t)] = \int_{-\infty}^{\infty} \phi(x) \frac{\partial p}{\partial t}(x,t)\,dx. \tag{1}
dtdE[ϕ(Xt)]=∫−∞∞ϕ(x)∂t∂p(x,t)dx.(1)
另一方面,对
ϕ
(
X
t
)
\phi(X_t)
ϕ(Xt) 应用 Itô 引理:
d
ϕ
(
X
t
)
=
ϕ
′
(
X
t
)
d
X
t
+
1
2
ϕ
′
′
(
X
t
)
(
d
X
t
)
2
.
d\phi(X_t) = \phi'(X_t)\,dX_t + \frac{1}{2} \phi''(X_t)\,(dX_t)^2.
dϕ(Xt)=ϕ′(Xt)dXt+21ϕ′′(Xt)(dXt)2.
将 SDE
d
X
t
=
a
(
X
t
,
t
)
d
t
+
b
(
X
t
,
t
)
d
B
t
dX_t = a(X_t,t)\,dt + b(X_t,t)\,dB_t
dXt=a(Xt,t)dt+b(Xt,t)dBt 代入,并利用 Itô 微积分规则:
(
d
t
)
2
=
d
t
d
B
t
=
0
,
(
d
B
t
)
2
=
d
t
,
(dt)^2 = dt\,dB_t = 0, \qquad (dB_t)^2 = dt,
(dt)2=dtdBt=0,(dBt)2=dt,
可得
(
d
X
t
)
2
=
b
2
(
X
t
,
t
)
d
t
+
o
(
d
t
)
.
(dX_t)^2 = b^2(X_t, t)\,dt + o(dt).
(dXt)2=b2(Xt,t)dt+o(dt).
因此,
d
ϕ
(
X
t
)
=
ϕ
′
(
X
t
)
[
a
(
X
t
,
t
)
d
t
+
b
(
X
t
,
t
)
d
B
t
]
+
1
2
ϕ
′
′
(
X
t
)
b
2
(
X
t
,
t
)
d
t
.
d\phi(X_t) = \phi'(X_t)\big[ a(X_t,t)\,dt + b(X_t,t)\,dB_t \big] + \frac{1}{2} \phi''(X_t) b^2(X_t,t)\,dt.
dϕ(Xt)=ϕ′(Xt)[a(Xt,t)dt+b(Xt,t)dBt]+21ϕ′′(Xt)b2(Xt,t)dt.
取期望(注意
E
[
d
B
t
]
=
0
\mathbb{E}[dB_t] = 0
E[dBt]=0):
d
d
t
E
[
ϕ
(
X
t
)
]
=
E
[
a
(
X
t
,
t
)
ϕ
′
(
X
t
)
+
1
2
b
2
(
X
t
,
t
)
ϕ
′
′
(
X
t
)
]
.
(2)
\frac{d}{dt} \mathbb{E}[\phi(X_t)] = \mathbb{E}\!\left[ a(X_t,t) \phi'(X_t) + \frac{1}{2} b^2(X_t,t) \phi''(X_t) \right]. \tag{2}
dtdE[ϕ(Xt)]=E[a(Xt,t)ϕ′(Xt)+21b2(Xt,t)ϕ′′(Xt)].(2)
将 (2) 写成积分形式:
d
d
t
∫
−
∞
∞
ϕ
(
x
)
p
(
x
,
t
)
d
x
=
∫
−
∞
∞
[
a
(
x
,
t
)
ϕ
′
(
x
)
+
1
2
b
2
(
x
,
t
)
ϕ
′
′
(
x
)
]
p
(
x
,
t
)
d
x
.
(3)
\frac{d}{dt} \int_{-\infty}^{\infty} \phi(x) p(x,t)\,dx = \int_{-\infty}^{\infty} \left[ a(x,t) \phi'(x) + \frac{1}{2} b^2(x,t) \phi''(x) \right] p(x,t)\,dx. \tag{3}
dtd∫−∞∞ϕ(x)p(x,t)dx=∫−∞∞[a(x,t)ϕ′(x)+21b2(x,t)ϕ′′(x)]p(x,t)dx.(3)
对右边两项分别进行分部积分。由于
ϕ
\phi
ϕ 紧支撑,边界项为零,故:
∫
a
(
x
,
t
)
ϕ
′
(
x
)
p
(
x
,
t
)
d
x
=
−
∫
ϕ
(
x
)
∂
∂
x
(
a
(
x
,
t
)
p
(
x
,
t
)
)
d
x
,
\int a(x,t) \phi'(x) p(x,t)\,dx = -\int \phi(x) \frac{\partial}{\partial x}\!\big( a(x,t) p(x,t) \big)\,dx,
∫a(x,t)ϕ′(x)p(x,t)dx=−∫ϕ(x)∂x∂(a(x,t)p(x,t))dx,
∫
1
2
b
2
(
x
,
t
)
ϕ
′
′
(
x
)
p
(
x
,
t
)
d
x
=
∫
ϕ
(
x
)
∂
2
∂
x
2
(
1
2
b
2
(
x
,
t
)
p
(
x
,
t
)
)
d
x
.
\int \frac{1}{2} b^2(x,t) \phi''(x) p(x,t)\,dx = \int \phi(x) \frac{\partial^2}{\partial x^2}\!\left( \frac{1}{2} b^2(x,t) p(x,t) \right)\,dx.
∫21b2(x,t)ϕ′′(x)p(x,t)dx=∫ϕ(x)∂x2∂2(21b2(x,t)p(x,t))dx.
代入 (3) 并与 (1) 比较,得:
∫
−
∞
∞
ϕ
(
x
)
∂
p
∂
t
(
x
,
t
)
d
x
=
∫
−
∞
∞
ϕ
(
x
)
[
−
∂
∂
x
(
a
(
x
,
t
)
p
(
x
,
t
)
)
+
∂
2
∂
x
2
(
1
2
b
2
(
x
,
t
)
p
(
x
,
t
)
)
]
d
x
.
\int_{-\infty}^{\infty} \phi(x) \frac{\partial p}{\partial t}(x,t)\,dx = \int_{-\infty}^{\infty} \phi(x) \left[ - \frac{\partial}{\partial x}\!\big( a(x,t) p(x,t) \big) + \frac{\partial^2}{\partial x^2}\!\left( \frac{1}{2} b^2(x,t) p(x,t) \right) \right] dx.
∫−∞∞ϕ(x)∂t∂p(x,t)dx=∫−∞∞ϕ(x)[−∂x∂(a(x,t)p(x,t))+∂x2∂2(21b2(x,t)p(x,t))]dx.
由于 ϕ ∈ C c ∞ ( R ) \phi \in C_c^\infty(\mathbb{R}) ϕ∈Cc∞(R) 任意,由变分引理(fundamental lemma of calculus of variations),被积函数必须几乎处处相等。因此,
∂ p ∂ t ( x , t ) = − ∂ ∂ x ( a ( x , t ) p ( x , t ) ) + ∂ 2 ∂ x 2 ( 1 2 b 2 ( x , t ) p ( x , t ) ) \boxed{ \frac{\partial p}{\partial t}(x,t) = -\frac{\partial}{\partial x}\!\big( a(x,t) p(x,t) \big) + \frac{\partial^2}{\partial x^2}\!\left( \frac{1}{2} b^2(x,t) p(x,t) \right) } ∂t∂p(x,t)=−∂x∂(a(x,t)p(x,t))+∂x2∂2(21b2(x,t)p(x,t))
此即 Fokker–Planck 方程(又称 前向 Kolmogorov 方程)。
3. 特例:热方程
若取
a
(
x
,
t
)
≡
0
a(x,t) \equiv 0
a(x,t)≡0,
b
(
x
,
t
)
≡
2
D
b(x,t) \equiv \sqrt{2D}
b(x,t)≡2D(
D
>
0
D > 0
D>0 为常数),则 SDE 为:
d
X
t
=
2
D
d
B
t
,
dX_t = \sqrt{2D}\,dB_t,
dXt=2DdBt,
对应的 Fokker–Planck 方程为:
∂
p
∂
t
=
D
∂
2
p
∂
x
2
,
\frac{\partial p}{\partial t} = D \frac{\partial^2 p}{\partial x^2},
∂t∂p=D∂x2∂2p,
即经典的 热传导方程(或扩散方程)。
到 Fokker-Planck 方程的推导&spm=1001.2101.3001.5002&articleId=154004281&d=1&t=3&u=748e42ab18324104ad12ff3af5e2438c)
1937

被折叠的 条评论
为什么被折叠?



