洛谷题解 P1217 [USACO1.5]回文质数 Prime Palindromes

本文深入探讨了USACO训练营1.5节的回文质数问题,详细介绍了如何通过构造回文数并判断其是否为质数来解决此问题。文章提供了完整的C++代码实现,并附带了解题思路和技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


[USACO1.5]回文质数 Prime Palindromes

题目描述

因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数。

写一个程序来找出范围[a,b](5 <= a < b <= 100,000,000)( 一亿)间的所有回文质数;

输入输出格式

输入格式:

 

第 1 行: 二个整数 a 和 b .

 

输出格式:

 

输出一个回文质数的列表,一行一个。

 

输入输出样例

输入样例#1: 复制

5 500

输出样例#1: 复制

5
7
11
101
131
151
181
191
313
353
373
383

说明

Hint 1: Generate the palindromes and see if they are prime.

提示 1: 找出所有的回文数再判断它们是不是质数(素数).

Hint 2: Generate palindromes by combining digits properly. You might need more than one of the loops like below.

提示 2: 要产生正确的回文数,你可能需要几个像下面这样的循环。

题目翻译来自NOCOW。

USACO Training Section 1.5

产生长度为5的回文数:

for (d1 = 1; d1 <= 9; d1+=2) { // 只有奇数才会是素数

     for (d2 = 0; d2 <= 9; d2++) {
         for (d3 = 0; d3 <= 9; d3++) {
           palindrome = 10000*d1 + 1000*d2 +100*d3 + 10*d2 + d1;//(处理回文数...)
         }
     }
 }

分割线————————————————————————————————————————————————————

我开始也想暴力来着,但是感觉不判断回文而是构造回文更好

错了好几次才AC

构造回文质数

这道题的核心思想是判断回文数和质数,方法道理都懂,就是:

记住要先构造前面再复制后面,

例如:回文数2345432, 先构造234,再往后面加变成

2340432, 再在0的位置上上填0-9.

代码如下:

#include<iostream>  
#include<cstdio>  
#include<cmath>
using namespace std;  
int isPrime(int n)  
{  
    int temp=n;  
    for(int i=2;i*i<=temp;i++)  
    {
        if(n%i==0)
        {
            return 0;
        }
    }
    return 1;  
}  
int shuw(int n)
{
    return log10(n+0.5)+1;
}
int huiwen(int x)
{
    int newed=0;
    int n=x;
    while(x)
    {
        newed=newed*10+x%10;
        x/=10;
    }
    n=n*pow(10,shuw(n)+1)+newed;
    return n;
}
int main()  
{  
    int n,m,temp;
    cin>>n>>m;
    for(int i=n;i<=11;i++)
    {
        if(isPrime(i))
        {
            cout<<i<<endl;
        }
    }
    for(int i=1;i<pow(10,shuw(m)/2);i++)
    {
        temp=huiwen(i);
        for(int j=0;j<=9;j++)
        {
            int num=temp;
            num+=j*pow(10,shuw(i));
            if(num>=n&&num<=m)
            {
                if(isPrime(num))
                {
                    cout<<num<<endl;
                }
            }
        }
    }
    //cout<<pow(10,0);
    //cout<<huiwen(4321);
    return 0;  
}

 

### 洛谷题目解答与算法解析 洛谷是一个广受欢迎的在线编程学习平台,提供大量算法题目和题解资源。针对不同的问题,用户可以选择适合自己的算法进行练习或解决问题。 #### DFS(深度优先搜索)在洛谷题目中的应用 DFS是一种经典的回溯算法,通常用于解决迷宫类问题或者路径探索问题。例如,在P1605题目中,使用DFS可以统计从起点到终点的所有可行路径数量。通过递归实现对每个方向的探索,并在满足条件时继续深入,直到到达目标点。以下代码展示了如何实现这一逻辑: ```cpp int dir[4][2] = {0, 1, 1, 0, 0, -1, -1, 0}; // 方向数组 bool check(int nx, int ny) { return nx >= 1 && nx <= n && ny >= 1 && ny <= m; } void dfs(int x, int y) { vis[x][y] = true; for (int i = 0; i < 4; i++) { int nx = x + dir[i][0]; int ny = y + dir[i][1]; if (check(nx, ny) && vis[nx][ny] == false && map[nx][ny] != '#') { dfs(nx, ny); } } vis[x][y] = false; // 回溯 } ``` 上述代码中,`dir`数组定义了四个方向的增量,`check`函数判断坐标是否合法,而`dfs`函数则递归地遍历所有可能的路径并进行回溯[^3]。 #### Dijkstra算法的应用 Dijkstra算法是解决最短路径问题的经典方法,适用于图中节点之间的加权边。以最小体力消耗为例,相邻格子的差值作为代价,可以通过构建小根堆来优化路径选择。具体来说,将每个节点的代价存储在堆中,并按照代价从小到大排序,逐步扩展路径直至找到目标点。以下是Dijkstra算法的核心部分: ```cpp struct Node { int x, y, cost; bool operator<(const Node& other) const { return cost > other.cost; } }; priority_queue<Node> pq; void dijkstra() { pq.push({start_x, start_y, 0}); dist[start_x][start_y] = 0; while (!pq.empty()) { Node current = pq.top(); pq.pop(); if (current.x == target_x && current.y == target_y) break; for (int i = 0; i < 4; i++) { int nx = current.x + dir[i][0]; int ny = current.y + dir[i][1]; if (check(nx, ny)) { int new_cost = abs(grid[nx][ny] - grid[current.x][current.y]); if (dist[nx][ny] > dist[current.x][current.y] + new_cost) { dist[nx][ny] = dist[current.x][current.y] + new_cost; pq.push({nx, ny, dist[nx][ny]}); } } } } } ``` 在此代码中,`Node`结构体定义了节点的信息,包括坐标和当前代价;`priority_queue`实现了小根堆的功能,确保每次取出代价最小的节点进行扩展[^2]。 #### 回溯算法在经典题目中的运用 回溯算法是解决组合、排列等问题的重要工具。例如,在N皇后问题中,通过尝试在每一行放置一个皇后,并检查是否满足列和对角线的约束条件,最终找出所有合法的布局方案。以下是N皇后问题的核心代码: ```cpp bool is_safe(int row, int col) { for (int i = 0; i < row; i++) { if (board[i] == col || abs(row - i) == abs(col - board[i])) { return false; } } return true; } void solve(int row) { if (row == n) { solutions++; return; } for (int col = 0; col < n; col++) { if (is_safe(row, col)) { board[row] = col; solve(row + 1); } } } ``` 此代码中,`is_safe`函数检查当前位置是否安全,`solve`函数递归地尝试每一列的可能性,并在找到完整解后增加计数器[^3]。 #### 总结 DFS、Dijkstra以及回溯算法在洛谷题目中均有广泛应用。DFS适合处理路径探索和数量统计问题,Dijkstra适用于最短路径问题,而回溯算法则擅长解决组合、排列等需要穷举可能性的问题。掌握这些算法及其变种对于提升编程能力至关重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值