1. 迹的定义
矩阵的迹tr(A)tr(A)tr(A)定义如下: 一个n×nn\times nn×n方阵A的迹是指:的主对角线上各元素的总和,即 :
tr(A)=∑i=1naiitr(A)=\sum_{i=1}^{n}a_{ii}tr(A)=i=1∑naii
注:只有方阵才有迹.
2. 迹的性质
A∈n×m,B∈m×n,AB∈n×n,BA∈m×mA \in n \times m,B \in m \times n,AB \in n \times n,BA \in m \times mA∈n×m,B∈m×n,AB∈n×n,BA∈m×m
定理1: tr(AB)=tr(BA)tr(AB)=tr(BA)tr(AB)=tr(BA)
定理2: tr(ABC)=tr(CAB)=tr(BCA)tr(ABC)=tr(CAB)=tr(BCA)tr(ABC)=tr(CAB)=tr(BCA)
定理3: ∂tr(AB)∂A=∂tr(BA)∂A=BT\frac{\partial tr(AB)} {\partial A}=\frac{\partial tr(BA)} {\partial A}=B^T∂A∂tr(AB)=∂A∂tr(BA)=BT
定理4: ∂tr(ATB)∂A=∂tr(BTA)∂A=B\frac{\partial tr(A^TB)} {\partial A}=\frac{\partial tr(B^TA)} {\partial A}=B∂A∂tr(ATB)=∂A∂tr(BTA)=B
定理5: ∂tr(ABATC)∂A=CAB+CTABT\frac{\partial tr(ABA^TC)} {\partial A} = CAB + C^TAB^T∂A∂tr(ABATC)=CAB+CTABT