多元函数微分法及其应用
由一元微分演化而来
1 多元函数
一、函数——极限——连续
分段函数-分片函数;趋于定点的方式;不连续点的证明方法,连续函数的性质
-
聚点=内点+边界
-
邻域(O(M,δ)O(M,\delta)O(M,δ)) →\rightarrow→ 开集 内点 →\rightarrow→ 开集 (不带“=”)
-
点集的所有边界点称为边界(边界是点集),边界不一定封闭(如:x ≥\geq≥ y)
-
开集+连通=开区域 开区域+边界=闭区域
P3 定义1:二元函数的定义
模型:和式的极限
步骤:1.分割 2.求和 3.取极限
-
-
孤立点是边界点,不是聚点
-
1.定义2 极限:P0(x0,y0)是定义域D的聚点,∀ ϵ>0,∃ δ>0,当0<(x−x0)2+(y−y0)2<δ时,恒有∣f(x,y)−A∣<ϵP_0(x_0,y_0)是定义域D的聚点,\forall\ \epsilon>0,\exists\ \delta>0,当0<\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta时,恒有\left|f(x,y)-A\right|<\epsilonP0(x0,y0)是定义域D的聚点,∀ ϵ>0,∃ δ>0,当0<(x−x0)2+(y−y0)2<δ时,恒有∣f(x,y)−A∣<ϵ
-
2.(后者有先后)limx→x0y→y0f(x,y)≠limx→x0limy→y0f(x,y) \lim\limits_{x\to x_0 \\ y\to y_0}f(x,y) \ne \lim\limits_{x\to x_0}\lim\limits_{y\to y_0} f(x,y) x→x0y→y0limf(x,y)=x→x0limy→y0limf(x,y)
-
3.limx→0y→0sin(x2y)x2+y2=limx→0y→0sin(x2y)x2yx2yx2+y2≤1⋅∣x∣2=0 ×limx→0y→0sin(x2y)x2+y2≤limx→0y→0x2yx2+y2≤∣x∣2=0 ✓ \lim\limits_{x\to 0 \\ y\to 0}\dfrac{\sin(x^2y)}{x^2+y^2}= \lim\limits_{x\to 0 \\ y\to 0}\dfrac{\sin(x^2y)}{\color{Red}x^2y}\dfrac{\color{Red}x^2y}{x^2+y^2} \le 1\cdot\dfrac{|x|}{2}=0 \ \times \\ \lim\limits_{x\to 0 \\ y\to 0}\dfrac{\sin(x^2y)}{x^2+y^2} \le \lim\limits_{x\to 0 \\ y\to 0}\dfrac{x^2y}{x^2+y^2} \le \dfrac{|x|}{2}=0 \ \checkmark x→0y→0limx2+y2sin(x2y)=x→0y→0limx2ysin(x2y)x2+y2x2y≤1⋅2∣x∣=0 ×x→0y→0limx2+y2sin(x2y)≤x→0y→0limx2+y2x2y≤2∣x∣=0 ✓
-
-
4.例:求limx→0y→0x3+y3x2+y2{\color{blue}求\lim\limits_{x\to 0 \\ y\to 0}\dfrac{x^3+y^3}{x^2+y^2}}求x→0y→0limx2+y2x3+y3 使用极坐标
解:取x=ρcosθ,y=ρsinθ原式=limρ→0ρ(sin3θ+cos3θ)≤limρ→0ρ=0 解:取x=\rho\cos\theta,y=\rho\sin\theta \\原式=\lim\limits_{\rho\to 0}\rho(\sin^3\theta+\cos^3\theta) \le \lim\limits_{\rho\to 0}\rho=0 解:取x=ρcosθ,y=ρsinθ原式=ρ→0limρ(sin3θ+cos3θ)≤ρ→0limρ=0
- fx(0,0)是否存在,看f_x(0,0)是否存在,看fx(0,0)是否存在,看
limx→0f(x,0)−f(0,0)x−0 \lim\limits_{x\rightarrow 0} \dfrac{f(x,0)-f(0,0)}{x-0} x→0limx−0f(x,0)−f(0,0)
- fx(0,0)是否存在,看f_x(0,0)是否存在,看fx(0,0)是否存在,看
-
确定极限不存在的方法:
- 例y=kxy=kxy=kx,若极限值与 kkk 有关,可断言极限不存在
-
不同种趋近方式使limx→x0y→y0f(x,y)\lim\limits_{x\to x_0 \\ y\to y_0}f(x,y)x→x0y→y0limf(x,y)存在但两者不相等,可断言极限不存在
-
P5 定义3 连续性:若f(x,y)f(x,y)f(x,y)在(x0,y0)(x_0,y_0)(x0,y0)的某邻域有意义,则limx→x0y→y0f(x,y)=f(x0,y0)\lim\limits_{x\rightarrow x_0 \\ y\rightarrow y_0}f(x,y)=f(x_0,y_0)x→x0y→y0limf(x,y)=f(x0,y0) ⟺ \iff⟺f(x,y)f(x,y)f(x,y)在点(x0,y0)(x_0,y_0)(x0,y0)连续
- 定理3 复合函数连续性
- 有界性定理
- 最值定理
- 介质定理
二、偏导数
- 求 分界点,不连续点 处的偏导数要用 定义 求(一元函数不连续必不可导,多元函数不连续可能偏导数存在)
- 求偏导数复杂可转化为求导数:∂z∂x∣(x0,y0)=dz(x0,y0)dx∣x=x0\left.\dfrac{\partial z}{\partial x}\right|_{(x_0,y_0)}=\left.\dfrac{dz(x_0,y_0)}{dx}\right|_{x=x_0}∂x∂z∣∣∣∣(x0,y0)=dxdz(x0,y0)∣∣∣∣x=x0.
例:f(x,y)=∣xy∣,求fx(0,0){\color{blue}f(x,y)=\sqrt{|xy|} ,求f_x(0,0)}f(x,y)=∣xy∣,求fx(0,0)
解:
f(x,y)={xy 一三象限−xy 二四象限0 坐标轴上则fx(0,0)=limΔx→0(0+Δx)⋅0−0⋅0Δx=0
f(x,y)=\begin{cases}\sqrt{xy} \ 一三象限\\ \sqrt{-xy} \ 二四象限\\ 0 \ 坐标轴上\end{cases} \\
则 f_x(0,0)=\lim\limits_{\Delta x \rightarrow0}\dfrac{\sqrt{(0+\Delta x)\cdot0}-\sqrt{0\cdot0}}{\Delta x}=0
f(x,y)=⎩⎪⎨⎪⎧xy 一三象限−xy 二四象限0 坐标轴上则fx(0,0)=Δx→0limΔx(0+Δx)⋅0−0⋅0=0
-
多元函数偏导存在不一定连续
-
高阶偏导数(混合偏导:fxy,fyx 纯偏导:fxx,fyy混合偏导:f_{xy},f_{yx}\ 纯偏导:f_{xx},f_{yy}混合偏导:fxy,fyx 纯偏导:fxx,fyy)
若两个混合偏导数连续,则fxy=fyxf_{xy}=f_{yx}fxy=fyx.
三、全微分
-
全增量(Δz)(\Delta z)(Δz)=全微分(AΔx+BΔy)(A\Delta x+B\Delta y)(AΔx+BΔy)+o(ρ)o(\rho)o(ρ)
-
1.称Δz\Delta zΔz为f(x,y)f(x,y)f(x,y)在(x0,y0)(x_0,y_0)(x0,y0)对应于Δx,Δy\Delta x,\Delta yΔx,Δy的全增量
Δz=f(x0+Δx,y0+Δy)−f(x0,y0)\Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)Δz=f(x0+Δx,y0+Δy)−f(x0,y0).
-
2.Δz\Delta zΔz能分解为线性主部AΔx+BΔyA\Delta x+B\Delta yAΔx+BΔy和高阶无穷小量o(ρ)(ρ=(Δx)2+(Δy)2)o(\rho)(\rho=\sqrt{(\Delta x)^2+(\Delta y)^2})o(ρ)(ρ=(Δx)2+(Δy)2),
称dz=AΔx+BΔydz=A\Delta x+B\Delta ydz=AΔx+BΔy为f(x,y)f(x,y)f(x,y)在(x0,y0)(x_0,y_0)(x0,y0)的全微分.
-
-
三个定理:
- 1.定理3:可微⇒\Rightarrow⇒连续
- 2.定理4:可微⇒\Rightarrow⇒偏导存在
- 3.定理5:偏导存在+偏导数连续⇒\Rightarrow⇒可微
-
近似计算(忽略o(ρ)忽略o(\rho)忽略o(ρ)):f(x0+Δx,y0+Δy)=f(x0,y0)+fx′(x0,y0)Δx+fy′(x0,y0)Δyf(x_0+\Delta x,y_0+\Delta y)=f(x_0,y_0)+f'_x(x_0,y_0)\Delta x+f'_y(x_0,y_0)\Delta yf(x0+Δx,y0+Δy)=f(x0,y0)+fx′(x0,y0)Δx+fy′(x0,y0)Δy
例:
(1)求(1.04)2.02 (2)求ln(1.033+0.984−1) {\color{blue}(1)求(1.04)^{2.02}\ \ (2)求ln(\sqrt[3]{1.03}+\sqrt[4]{0.98}-1)} (1)求(1.04)2.02 (2)求ln(31.03+40.98−1)解:(1)
设函数f(x,y)=xy,取x0=1,y0=2,Δx=0.04,Δy=0.02且fx=yxy−1,fy=xylnx.故fx(1,2)=2,fy(1,2)=0(1.04)2.02=12+2×0.04+0×0.02=1.08 设函数f(x,y)=x^y,取x_0=1,y_0=2,\Delta x=0.04,\Delta y=0.02\\ 且f_x=yx^{y-1},f_y=x^ylnx.故f_x(1,2)=2,f_y(1,2)=0\\ (1.04)^2.02=1^2+2 \times 0.04+0 \times 0.02=1.08 设函数f(x,y)=xy,取x0=1,y0=2,Δx=0.04,Δy=0.02且fx=yxy−1,fy=xylnx.故fx(1,2)=2,fy(1,2)=0(1.04)2.02=12+2×0.04+0×0.02=1.08(2) 设函数f(x,y)=ln(x3+y4−1),取x1=1,y0=1,Δx=0.03,Δy=−0.02且fx=13x23(x3+y4−1),fy=14y34(x3+y4−1).故fx(1,1)=13,fy(1,1)=14ln(1.033+0.984−1)=0+13×0.03+14×(−0.02)=0.005 设函数f(x,y)=ln(\sqrt[3]{x}+\sqrt[4]{y}-1),取x_1=1,y_0=1,\Delta x=0.03,\Delta y=-0.02\\ 且f_x=\dfrac{1}{3x^{\frac{2}{3}}(\sqrt[3]{x}+\sqrt[4]{y}-1)},f_y=\dfrac{1}{4y^{\frac{3}{4}}(\sqrt[3]{x}+\sqrt[4]{y}-1)}.故f_x(1,1)=\frac{1}{3},f_y(1,1)=\frac{1}{4}\\ ln(\sqrt[3]{1.03}+\sqrt[4]{0.98}-1)=0+\frac{1}{3} \times 0.03+\frac{1}{4} \times (-0.02)=0.005 设函数f(x,y)=ln(3x+4y−1),取x1=1,y0=1,Δx=0.03,Δy=−0.02且fx=3x32(3x+4y−1)1,fy=4y43(3x+4y−1)1.故fx(1,1)=31,fy(1,1)=41ln(31.03+40.98−1)=0+31×0.03+41×(−0.02)=0.005 -
证明全微分存在(判断可微的步骤):(Δz,fx(x0,y0),fy(x0,y0),ρ\Delta z,f_x(x_0,y_0),f_y(x_0,y_0),\rhoΔz,fx(x0,y0),fy(x0,y0),ρ )
-
1.求出fx′(x,u),fy′(x,y)f'_x(x,u),f'_y(x,y)fx′(x,u),fy′(x,y),若偏导数在(x0,y0)(x_0,y_0)(x0,y0)处不连续,则不可微;计算A=fx′(x,u),B=fy′(x,y)A=f'_x(x,u),B=f'_y(x,y)A=fx′(x,u),B=fy′(x,y),若其中至少有一个不存在,则不可微;若都存在,进入第二步
-
2.计算 limρ→0+Δz−(AΔx+BΔy)ρ=0 (?) \lim\limits_{\rho\rightarrow0^+}\dfrac{\Delta z-(A\Delta x+B\Delta y)}{\rho}=0\ (?) ρ→0+limρΔz−(AΔx+BΔy)=0 (?)其中 Δz=f(x0+Δx,y0+Δy)−f(x0,y0)ρ=(Δx)2+(Δy)2 \Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0) \\ \rho=\sqrt{(\Delta x)^2+(\Delta y)^2} Δz=f(x0+Δx,y0+Δy)−f(x0,y0)ρ=(Δx)2+(Δy)2 若等于0,则可微(等价条件)
解:
(1)证f(x,y)连续:即证 limx→x0y→y0f(x,y)=f(x0,y0)\lim\limits_{x\rightarrow x_0 \\ y\rightarrow y_0}f(x,y)=f(x_0,y_0)x→x0y→y0limf(x,y)=f(x0,y0) (2)证偏导数存在:即证 fx(x0,y0)=limx→x0f(x,y0)−f(x0,y0)xf_x(x_0,y_0)=\lim\limits_{x\rightarrow x_0}\dfrac{f(x,y_0)-f(x_0,y_0)}{x}fx(x0,y0)=x→x0limxf(x,y0)−f(x0,y0)为定值
(3)证偏导数不连续
(4)证可微:即证 limρ→0+f(x0+Δx,y0+Δy)−f(x0,y0)−(AΔx+BΔy)(Δx)2+(Δy)2=0\lim\limits_{\rho\rightarrow0^+}\dfrac{f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)-(A\Delta x+B\Delta y)}{\sqrt{(\Delta x)^2+(\Delta y)^2}}=0ρ→0+lim(Δx)2+(Δy)2f(x0+Δx,y0+Δy)−f(x0,y0)−(AΔx+BΔy)=0
-
-
叠加原理:多元函数的全微分等于其多个偏微分之和。(dz=∂z∂xdx+∂z∂ydydz=\dfrac{\partial z}{\partial x}dx+\dfrac{\partial z}{\partial y}dydz=∂x∂zdx+∂y∂zdy)
-
全微分不变性:不论u,vu,vu,v是自变量还是中间变量,对于z=f(u,v)z=f(u,v)z=f(u,v),都有dz=fudu+fvdvdz=f_udu+f_vdvdz=fudu+fvdv.
例:设u=sin(x2+y2)+exz,求在(1,0,1)处的全微分du.\color{blue}设u=\sin(x^2+y^2)+e^{xz},求在(1,0,1)处的全微分du.设u=sin(x2+y2)+exz,求在(1,0,1)处的全微分du.
解:du=cos(x2+y2)d(x2+y2)+exzd(xz)=cos(x2+y2)(2xdx+2ydy)+exz(zdx+xdz)=(2cos1+e)dx+edz. du= \cos(x^2+y^2)d(x^2+y^2)+e^{xz}d(xz) \\ =\cos(x^2+y^2)(2xdx+2ydy)+e^{xz}(zdx+xdz) \\ =(2\cos1+e)dx+edz. du=cos(x2+y2)d(x2+y2)+exzd(xz)=cos(x2+y2)(2xdx+2ydy)+exz(zdx+xdz)=(2cos1+e)dx+edz.
四、复合函数微分法
-
链式法则: dzdt=∂z∂xdxdt+∂z∂ydydtdzdu=∂z∂x∂x∂u+∂z∂y∂y∂u or dzdw=∂z∂x∂x∂w+∂z∂y∂y∂w \dfrac{dz}{dt}=\dfrac{\partial z}{\partial x}\dfrac{{\color{red}d} x}{{\color{red}d}t}+\dfrac{\partial z}{\partial y}\dfrac{{\color{red}d}y}{{\color{red}d}t} \\ \dfrac{dz}{du}=\dfrac{\partial z}{\partial x}\dfrac{{\color{red}\partial}x}{{\color{red}\partial}u}+\dfrac{\partial z}{\partial y}\dfrac{{\color{red}\partial}y}{{\color{red}\partial}u}\ or\ \dfrac{dz}{dw}=\dfrac{\partial z}{\partial x}\dfrac{{\color{red}\partial}x}{{\color{red}\partial}w}+\dfrac{\partial z}{\partial y}\dfrac{{\color{red}\partial}y}{{\color{red}\partial}w} dtdz=∂x∂zdtdx+∂y∂zdtdydudz=∂x∂z∂u∂x+∂y∂z∂u∂y or dwdz=∂x∂z∂w∂x+∂y∂z∂w∂y
-
例:z=f(u,x,y),其中u=ϕ(x,y),求∂z∂x和∂z∂y\color{blue}z=f(u,x,y),其中u=\phi(x,y),求\dfrac{\partial z}{\partial x}和\dfrac{\partial z}{\partial y}z=f(u,x,y),其中u=ϕ(x,y),求∂x∂z和∂y∂z.
解:
z=f(ϕ(x,y),x,y).令w=x,v=y∂z∂x=∂f∂u∂u∂x+∂f∂wdwdx.∂z∂y=∂f∂u∂u∂y+∂f∂vdvdy. z=f(\phi(x,y),x,y).令w=x,v=y \\ \dfrac{\partial z}{\partial x}=\dfrac{\partial f}{\partial u}\dfrac{\partial u}{\partial x}+\dfrac{\partial f}{\partial w}\dfrac{dw}{dx}. \\ \dfrac{\partial z}{\partial y}=\dfrac{\partial f}{\partial u}\dfrac{\partial u}{\partial y}+\dfrac{\partial f}{\partial v}\dfrac{dv}{dy}. z=f(ϕ(x,y),x,y).令w=x,v=y∂x∂z=∂u∂f∂x∂u+∂w∂fdxdw.∂y∂z=∂u∂f∂y∂u+∂v∂fdydv.
区别:z=f(u,x,y) VS z=f(ϕ(x,y),x,y)z=f(u,x,y)\ VS\ z=f(\phi(x,y),x,y)z=f(u,x,y) VS z=f(ϕ(x,y),x,y).(∂z∂x≠∂f∂x=f2\dfrac{\partial z}{\partial x}\ne \dfrac{\partial f}{\partial x}=f_2∂x∂z=∂x∂f=f2) -
做题先写公式
-
例3: w=f(x+y+z.xyz),f具有二阶连续偏导,求∂w∂x和∂2w∂x∂z{\color{blue}w=f(x+y+z.xyz),f具有二阶连续偏导,求\dfrac{\partial w}{\partial x}和\dfrac{\partial^2 w}{\partial x \partial z}}w=f(x+y+z.xyz),f具有二阶连续偏导,求∂x∂w和∂x∂z∂2w.
解:
令u=x+y+z,v=xyz(1)∂w∂x=∂w∂u∂u∂x+∂w∂v∂v∂x=f1(u,v)+f2(u,v)yz.(2)∂2w∂x∂z=f11(u,v)+f12(u,v)xy+yz(f21(u,v)+f22(u,v)xy)=f12(u,v)y(x+z)+f11(u,v)+f22(u,v)xy2z.(∵f二阶连续偏导) 令u=x+y+z,v=xyz \\ (1)\dfrac{\partial w}{\partial x}=\dfrac{\partial w}{\partial u}\dfrac{\partial u}{\partial x}+\dfrac{\partial w}{\partial v}\dfrac{\partial v}{\partial x}=f_1(u,v)+f_2(u,v)yz.\\ (2)\dfrac{\partial^2 w}{\partial x \partial z}=f_{11}(u,v)+f_{12}(u,v)xy+yz(f_{21}(u,v)+f_{22}(u,v)xy)\\ =f_{12}(u,v)y(x+z)+f_{11}(u,v)+f_{22}(u,v)xy^2z.(\because f二阶连续偏导) 令u=x+y+z,v=xyz(1)∂x∂w=∂u∂w∂x∂u+∂v∂w∂x∂v=f1(u,v)+f2(u,v)yz.(2)∂x∂z∂2w=f11(u,v)+f12(u,v)xy+yz(f21(u,v)+f22(u,v)xy)=f12(u,v)y(x+z)+f11(u,v)+f22(u,v)xy2z.(∵f二阶连续偏导)五、隐函数
-
一个方程时(二元函数、三元函数):
-
条件1:F(x0,y0)=0F(x_0,y_0)=0F(x0,y0)=0
条件2:Fx,Fy连续F_x,F_y连续Fx,Fy连续
条件3:Fy(x0,y0)≠0F_y(x_0,y_0)\ne0Fy(x0,y0)=0
则:存在唯一y=f(x)y=f(x)y=f(x)且f′(x)=dydx=−FxFyf'(x)=\dfrac{dy}{dx}=-\dfrac{F_x}{F_y}f′(x)=dxdy=−FyFx.
-
条件1:F(x0,y0,z0)=0F(x_0,y_0,z_0)=0F(x0,y0,z0)=0
条件2:Fx,Fy,Fz连续F_x,F_y,F_z连续Fx,Fy,Fz连续
条件3:Fz(x0,y0,z0)≠0F_z(x_0,y_0,z_0)\ne0Fz(x0,y0,z0)=0
则:存在唯一z=f(x,y)z=f(x,y)z=f(x,y)且dzdx=−FxFz,dzdy=−FyFz\dfrac{dz}{dx}=-\dfrac{F_x}{F_z},\dfrac{dz}{dy}=-\dfrac{F_y}{F_z}dxdz=−FzFx,dydz=−FzFy.
例:x2+y2+z2−4z=0,求∂2z∂x2\color{blue}x^2+y^2+z^2-4z=0,求\dfrac{\partial^2 z}{\partial x^2}x2+y2+z2−4z=0,求∂x2∂2z
令F(x,y,z)=x2+y2+z2−4z=0Fx=2x,Fz=2z−4.∂z∂x=−2x2z−4=x2−z,∂2z∂x2=∂∂x(x2−z)=2−z+xzx(2−z)2=(2−z)2+x2(2−z)3. 令F(x,y,z)=x^2+y^2+z^2-4z=0 \\ F_x=2x,F_z=2z-4. \\ \dfrac{\partial z}{\partial x}=-\dfrac{2x}{2z-4}=\dfrac{x}{2-z},\\ \dfrac{\partial^2 z}{\partial x^2}={\color{red}\dfrac{\partial}{\partial x}(\dfrac{x}{2-z})}=\dfrac{2-z+xz_x}{(2-z)^2}=\dfrac{(2-z)^2+x^2}{(2-z)^3}. 令F(x,y,z)=x2+y2+z2−4z=0Fx=2x,Fz=2z−4.∂x∂z=−2z−42x=2−zx,∂x2∂2z=∂x∂(2−zx)=(2−z)22−z+xzx=(2−z)3(2−z)2+x2.
例:z=f(x+y+z,xyz),求∂z∂x\color{blue}z=f(x+y+z,xyz),求\dfrac{\partial z}{\partial x}z=f(x+y+z,xyz),求∂x∂z法1:
F(x,y,z)=z−f(x+y+z,xyz)Fx=−f1′−yzf2′,Fz=1−f1′−xyf2′.∴∂z∂x=f1′+yzf2′1−f1′−xyf2′. \color{red}F(x,y,z)=z-f(x+y+z,xyz) \\ F_x=-f'_1-yzf'_2,F_z=1-f'_1-xyf'_2. \\ \therefore \dfrac{\partial z}{\partial x}=\dfrac{f'_1+yzf'_2}{1-f'_1-xyf'_2}. F(x,y,z)=z−f(x+y+z,xyz)Fx=−f1′−yzf2′,Fz=1−f1′−xyf2′.∴∂x∂z=1−f1′−xyf2′f1′+yzf2′.
法2:
等式两边看成x,y的函数对x求偏导:∂z∂x=f1′(1+∂z∂x)+f2′(yz+xy∂z∂x)∴∂z∂x=f1′+yzf2′1−f1′−xyf2′ {\color{red}等式两边看成x,y的函数对x求偏导}:\dfrac{\partial z}{\partial x}=f'_1(1+\dfrac{\partial z}{\partial x})+f'_2(yz+xy\dfrac{\partial z}{\partial x}) \\ \therefore \dfrac{\partial z}{\partial x}=\dfrac{f'_1+yzf'_2}{1-f'_1-xyf'_2} 等式两边看成x,y的函数对x求偏导:∂x∂z=f1′(1+∂x∂z)+f2′(yz+xy∂x∂z)∴∂x∂z=1−f1′−xyf2′f1′+yzf2′
-
-
方程组时:由{F(x,y,u,v)=0G(x,y,u,v)=0\begin{cases}F(x,y,u,v)=0 \\G(x,y,u,v)=0\end{cases}{F(x,y,u,v)=0G(x,y,u,v)=0确定隐函数u=u(x,y),v=v(x,y)u=u(x,y),v=v(x,y)u=u(x,y),v=v(x,y)
-
克莱姆法则(联立求∂u∂x,∂v∂x\dfrac{\partial u}{\partial x},\dfrac{\partial v}{\partial x}∂x∂u,∂x∂v等即可)
{Fx′+Fu′∂u∂x+Fv′∂v∂x=0,Gx′+Gu′∂u∂x+Gv′∂v∂x=0.\begin{cases}F'_x+F'_u\dfrac{\partial u}{\partial x}+F'_v\dfrac{\partial v}{\partial x}=0, \\G'_x+G'_u\dfrac{\partial u}{\partial x}+G'_v\dfrac{\partial v}{\partial x}=0.\end{cases}⎩⎪⎨⎪⎧Fx′+Fu′∂x∂u+Fv′∂x∂v=0,Gx′+Gu′∂x∂u+Gv′∂x∂v=0.
-
2 偏导应用
一、几何应用
-
曲线
-
参数方程形式x=x(t),y=y(t),z=z(t)x = x(t), y = y(t), z = z(t)x=x(t),y=y(t),z=z(t).取点P0(x0,y0,z0)P_0(x_0,y_0,z_0)P0(x0,y0,z0)
-
切线:x−x0x′(t0)=y−y0y′(t0)=z−z0z′(t0)\dfrac{x-x_0}{x'(t_0)} = \dfrac{y-y_0}{y'(t_0)} = \dfrac{z-z_0}{z'(t_0)}x′(t0)x−x0=y′(t0)y−y0=z′(t0)z−z0.(两点式)
-
切向量(切线的方向向量):l⃗=(x′(t0),y′(t0),z′(t0))\vec{l} = (x'(t_0), y'(t_0), z'(t_0))l=(x′(t0),y′(t0),z′(t0)).
-
法平面(与P0P_0P0处切线垂直的平面):x′(t0)(x−x0)+y′(t0)(y−y0)+z′(t0)(z−z0)=0x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0x′(t0)(x−x0)+y′(t0)(y−y0)+z′(t0)(z−z0)=0.
-
-
隐函数形式(两曲面交线){F(x,y,z)=0G(x,y,z)=0\left\{\begin{matrix}F(x,y,z)=0 \\G(x, y, z)= 0\\\end{matrix}\right.{F(x,y,z)=0G(x,y,z)=0
- 切线:
x−x0dxdx=y−y0dydx=z−z0dzdxx−x0∣FyFzGyGz∣P0=y−y0∣FzFxGzGx∣P0=z−z0∣FxFyGxGy∣P0 \dfrac{x-x_0}{\dfrac{dx}{dx}}=\dfrac{y-y_0}{\dfrac{dy}{dx}}=\dfrac{z-z_0}{\dfrac{dz}{dx}} \\ \dfrac{x-x_0}{\begin{vmatrix}F_y & F_z \\ G_y & G_z \end{vmatrix}_{P_0}}=\dfrac{y-y_0}{\begin{vmatrix}F_z & F_x \\ G_z & G_x \end{vmatrix}_{P_0}}=\dfrac{z-z_0}{\begin{vmatrix}F_x & F_y \\ G_x & G_y \end{vmatrix}_{P_0}} dxdxx−x0=dxdyy−y0=dxdzz−z0∣∣∣∣FyGyFzGz∣∣∣∣P0x−x0=∣∣∣∣FzGzFxGx∣∣∣∣P0y−y0=∣∣∣∣FxGxFyGy∣∣∣∣P0z−z0
- 切向量:
l⃗=∣ijkFxFyFzGxGyGz∣={∣FyFzGyGz∣,−∣FxFzGxGz∣,∣FxFyGxGy∣} \vec{l}= \begin{vmatrix}i & j & k \\ F_x & F_y & F_z \\ G_x & G_y & G_z \end{vmatrix}=\{\begin{vmatrix}F_y & F_z \\ G_y & G_z \end{vmatrix},-\begin{vmatrix}F_x & F_z \\ G_x & G_z \end{vmatrix},\begin{vmatrix}F_x & F_y \\ G_x & G_y \end{vmatrix}\} l=∣∣∣∣∣∣iFxGxjFyGykFzGz∣∣∣∣∣∣={∣∣∣∣FyGyFzGz∣∣∣∣,−∣∣∣∣FxGxFzGz∣∣∣∣,∣∣∣∣FxGxFyGy∣∣∣∣}
- 法平面:
∣FyFzGyGz∣P0(x−x0)+∣FzFxGzGx∣P0(y−y0)+∣FxFyGxGy∣P0(z−z0)=0 \begin{vmatrix}F_y & F_z \\ G_y & G_z \end{vmatrix}_{P_0}(x-x_0)+\begin{vmatrix}F_z & F_x \\ G_z & G_x \end{vmatrix}_{P_0}(y-y_0)+\begin{vmatrix}F_x & F_y \\ G_x & G_y \end{vmatrix}_{P_0}(z-z_0)=0 ∣∣∣∣FyGyFzGz∣∣∣∣P0(x−x0)+∣∣∣∣FzGzFxGx∣∣∣∣P0(y−y0)+∣∣∣∣FxGxFyGy∣∣∣∣P0(z−z0)=0
-
-
曲面
-
一般方程为F(x,y,z)=0F(x,y,z)=0F(x,y,z)=0:
- 切平面:Fx′(x−x0)+Fy′(y−y0)+Fz′(z−z0)=0F'_x(x-x_0)+F'_y(y-y_0)+F'_z(z-z_0)=0Fx′(x−x0)+Fy′(y−y0)+Fz′(z−z0)=0.
- 法线方程(与P0P_0P0处垂直于切平面的法线):x−x0Fx′=y−y0Fy′=z−z0Fz′\dfrac{x-x_0}{F'_x}=\dfrac{y-y_0}{F'_y}=\dfrac{z-z_0}{F'_z}Fx′x−x0=Fy′y−y0=Fz′z−z0.
- 法向量(法线的方向向量):n⃗={Fx′(x0,y0,z0),Fy′(x0,y0,z0),Fz′(x0,y0,z0)}\vec{n} =\{F'_x(x_0,y_0,z_0),F'_y(x_0,y_0,z_0),F'_z(x_0,y_0,z_0)\}n={Fx′(x0,y0,z0),Fy′(x0,y0,z0),Fz′(x0,y0,z0)}.
-
当函数为z=f(x.y)z=f(x.y)z=f(x.y)时,切平面方程为 Fx′(x0,y0)(x−x0)+Fy′(x0,y0)(y−y0)=(z−z0)F'_x(x_0,y_0)(x-x_0)+F'_y(x_0,y_0)(y-y_0)=(z-z_0)Fx′(x0,y0)(x−x0)+Fy′(x0,y0)(y−y0)=(z−z0).
表示函数z=f(x.y)z=f(x.y)z=f(x.y)在点(x0,y0)(x_0,y_0)(x0,y0)的全微分的几何意义指切平面上对应点的竖坐标的增量。
-
二、方向导数与梯度
-
方向导数=平均变化率(ρ→0\rho\rightarrow0ρ→0)
∂f∂l=∂z∂l=limρ→0f(x+Δx,y+Δy)−f(x,y)ρ,其中ρ=(Δx)2+(Δy)2.\dfrac{\partial f}{\partial l}=\dfrac{\partial z}{\partial l}=\lim\limits_{\rho\rightarrow0}\dfrac{f(x+\Delta x,y+\Delta y)-f(x,y)}{\rho},其中\rho=\sqrt{(\Delta x)^2+(\Delta y)^2}.∂l∂f=∂l∂z=ρ→0limρf(x+Δx,y+Δy)−f(x,y),其中ρ=(Δx)2+(Δy)2.
P31 定理1:若函数z=f(x,y)z=f(x,y)z=f(x,y)在P(x,y)P(x,y)P(x,y)可微,则函数z=f(x,y)z=f(x,y)z=f(x,y)在点P沿任意射线lll的方向导数都存在,且∂z∂l=∂z∂xcosα+∂z∂ycosβ\dfrac{\partial z}{\partial l}=\dfrac{\partial z}{\partial x}\cos\alpha+\dfrac{\partial z}{\partial y}\cos\beta∂l∂z=∂x∂zcosα+∂y∂zcosβ.
-
梯度(点P出发速度变化最快的方向)
-
对于平面DDD上的每一点P(x,y)P(x,y)P(x,y)都可定出一个速度变化最快的方向的向量∂z∂xi⃗+∂z∂yj⃗\dfrac{\partial z}{\partial x}\vec i+\dfrac{\partial z}{\partial y}\vec j∂x∂zi+∂y∂zj称为函数在此点的梯度,记为gradf(x,y)gradf(x,y)gradf(x,y).
-
由方向导数公式知,∂z∂l=∂z∂xcosα+∂z∂ycosβ=(∂z∂xi⃗+∂z∂yj⃗)(cosαi⃗+cosβj⃗)=gradf(x,y)⋅l⃗\dfrac{\partial z}{\partial l}=\dfrac{\partial z}{\partial x}\cos\alpha+\dfrac{\partial z}{\partial y}\cos\beta=(\dfrac{\partial z}{\partial x}\vec i+\dfrac{\partial z}{\partial y}\vec j)(\cos\alpha\vec i+\cos\beta\vec j)=gradf(x,y)\cdot \vec l∂l∂z=∂x∂zcosα+∂y∂zcosβ=(∂x∂zi+∂y∂zj)(cosαi+cosβj)=gradf(x,y)⋅l,
故当 方向导数方向与法线矢量方向相同 时,方向导数的模最大,为∣gradf(x,y)∣=(∂f∂x)2+(∂f∂y)2|gradf(x,y)|=\sqrt{(\dfrac{\partial f}{\partial x})^2+(\dfrac{\partial f}{\partial y})^2}∣gradf(x,y)∣=(∂x∂f)2+(∂y∂f)2,这个方向向量即为此点的梯度。
-
三、多元函数的极值
-
极值f(x0,y0)f(x_0,y_0)f(x0,y0),极值点P(x0,y0)P(x_0,y_0)P(x0,y0)
-
必要条件:极值存在 ⟹\Longrightarrow⟹ fx′(x0,y0)=0且fy′(x0,y0)=0f'_x(x_0,y_0)=0且f'_y(x_0,y_0)=0fx′(x0,y0)=0且fy′(x0,y0)=0(驻点)
驻点不一定是极值点。例:z=xyz=xyz=xy中的(0,0)(0,0)(0,0)是驻点但不是极值点.
-
充分条件:
-
(1)f(x,y)f(x,y)f(x,y)有连续的二阶偏导数(则fxy(x0,y0)=fyx(x0,y0)f_{xy}(x_0,y_0)=f_{yx}(x_0,y_0)fxy(x0,y0)=fyx(x0,y0).
-
(2)fx′(x0,y0)=0且fy′(x0,y0)=0f'_x(x_0,y_0)=0且f'_y(x_0,y_0)=0fx′(x0,y0)=0且fy′(x0,y0)=0.
-
(3)[fxy′′(x0,y0)]2−fxx(x0,y0)fyy(x0,y0)<0.[f''_{\color{red}xy}(x_0,y_0)]^2-f_{\color{red}xx}(x_0,y_0)f_{\color{red}yy}(x_0,y_0)<0.[fxy′′(x0,y0)]2−fxx(x0,y0)fyy(x0,y0)<0. ⟹\Longrightarrow⟹ 极值存在,其中fxx(x0,y0)<0f_{xx}(x_0,y_0)<0fxx(x0,y0)<0有极大值,fxx(x0,y0)>0f_{xx}(x_0,y_0)>0fxx(x0,y0)>0有极小值。
[fxy′′(x0,y0)]2−fxx(x0,y0)fyy(x0,y0)>0.[f''_{\color{red}xy}(x_0,y_0)]^2-f_{\color{red}xx}(x_0,y_0)f_{\color{red}yy}(x_0,y_0)>0.[fxy′′(x0,y0)]2−fxx(x0,y0)fyy(x0,y0)>0. ⟹\Longrightarrow⟹ 极值不存在
-
-
求法:
- 1.解方程fx′(x0,y0)=0和fy′(x0,y0)=0f'_x(x_0,y_0)=0和f'_y(x_0,y_0)=0fx′(x0,y0)=0和fy′(x0,y0)=0得驻点
- 2.对每个驻点(x0,y0)(x_0,y_0)(x0,y0),求A=fxx(x0,y0)、B=fyy(x0,y0)、C=fxy′′(x0,y0)A=f_{xx}(x_0,y_0) 、B=f_{yy}(x_0,y_0)、C=f''_{xy}(x_0,y_0)A=fxx(x0,y0)、B=fyy(x0,y0)、C=fxy′′(x0,y0)的值
- 3.由B2−ACB^2-ACB2−AC的符号确定是否为极值点,由AAA的符号确定极大值点或极小值点
例:求x2+y2+z2−2x=2y−4z−10=0所确定的z=f(x,y)的极值\color{blue}求x^2+y^2+z^2-2x=2y-4z-10=0所确定的z=f(x,y)的极值求x2+y2+z2−2x=2y−4z−10=0所确定的z=f(x,y)的极值
求导得zx′=x−12−z,zy′=y+12−z,得驻点为P(1,−1)求二阶导zxx′′=2−z+(x−1)zx′2−z,则zxx′′∣p=12−z.zxy′′=(x−1)zy′(2−z)2,则zxy′′∣p=0.zxy′′=2−z+(y+1)zy(2−z)2,则zxx′′∣p=12−z.故B2−AC=−1(2−z)2<0,则在P点有极值。当P(1,−1)时,z=−2或6.z=−2时,A=14>0,为极小值。z=6时,A=−14<0,为极大值。 求导得z'_x=\dfrac{x-1}{2-z},z'_y=\dfrac{y+1}{2-z},得驻点为P(1,-1) \\ 求二阶导z''_{xx}=\dfrac{2-z+(x-1)z'_x}{2-z},则z''_{xx}|_p=\dfrac{1}{2-z}. \\ z''_{xy}=\dfrac{(x-1)z'_y}{(2-z)^2},则z''_{xy}|_p=0. \\ z''_{xy}=\dfrac{2-z+(y+1)z_y}{(2-z)^2},则z''_{xx}|_p=\dfrac{1}{2-z}. \\ 故B^2-AC=-\dfrac{1}{(2-z)^2}<0,则在P点有极值。 当P(1,-1)时,z=-2或6.\\ z=-2时,A=\dfrac{1}{4}>0,为极小值。z=6时,A=-\dfrac{1}{4}<0,为极大值。 求导得zx′=2−zx−1,zy′=2−zy+1,得驻点为P(1,−1)求二阶导zxx′′=2−z2−z+(x−1)zx′,则zxx′′∣p=2−z1.zxy′′=(2−z)2(x−1)zy′,则zxy′′∣p=0.zxy′′=(2−z)22−z+(y+1)zy,则zxx′′∣p=2−z1.故B2−AC=−(2−z)21<0,则在P点有极值。当P(1,−1)时,z=−2或6.z=−2时,A=41>0,为极小值。z=6时,A=−41<0,为极大值。 -
-
最值:
比较函数 内部的所有驻点和 边界处的最值点 ,得出整体函数范围内的最值
-
拉格朗日乘数法(条件极值,即要找f(x,y)f(x,y)f(x,y)在条件g(x,y)=0g(x,y)=0g(x,y)=0下可能得极值点):
方法:构造函数F(x,y)=f(x,y)+λg(x,y)=0F(x,y)=f(x,y)+\lambda g(x,y)=0F(x,y)=f(x,y)+λg(x,y)=0,则F(x,y)F(x,y)F(x,y)的极值点便可能为f(x,y)f(x,y)f(x,y)的极值点。
即求解方程{fx(x,y)+λgx(x,y)=0fy(x,y)+λgy(x,y)=0g(x,y)=0\begin{cases}f_x(x,y)+\lambda g_x(x,y)=0\\f_y(x,y)+\lambda g_y(x,y)=0\\g(x,y)=0\end{cases}⎩⎪⎨⎪⎧fx(x,y)+λgx(x,y)=0fy(x,y)+λgy(x,y)=0g(x,y)=0
例:求椭圆x2+2xy+3y2−8y=0与直线x+y=8之间的最短距离\color{blue}求椭圆x^2+2xy+3y^2-8y=0与直线x+y=8之间的最短距离求椭圆x2+2xy+3y2−8y=0与直线x+y=8之间的最短距离
任一点(x0,y0)到直线距离的平方d2=(x+y−8)22.构造令F(x,y)=12(x+y−8)2+λ(x2+2xy+3y2−8y),解方程{Fx′=x+y−8+(2λx+2λy)=0Fy′=x+y−8+(2λx+6λy−8λ)=0x2+2xy+3y2−8y=0解得{x=−2+22y=2或{x=−2−22y=2且d1=42−2,d2=42+2.故最短路径为42−2.
任一点(x_0,y_0)到直线距离的平方d^2=\dfrac{(x+y-8)^2}{2}. \\
构造令F(x,y)=\dfrac{1}{2}(x+y-8)^2+\lambda (x^2+2xy+3y^2-8y), \\
解方程\begin{cases}F'_x=x+y-8+(2\lambda x+2\lambda y)=0 \\ F'_y=x+y-8+(2\lambda x+6\lambda y-8\lambda)=0 \\ x^2+2xy+3y^2-8y=0 \end{cases} \\
解得\begin{cases}x=-2+2\sqrt{2} \\ y=2 \end{cases} 或\begin{cases}x=-2-2\sqrt{2} \\ y=2 \end{cases}且d_1=4\sqrt{2}-2,d_2=4\sqrt{2}+2. \\
故最短路径为4\sqrt{2}-2.
任一点(x0,y0)到直线距离的平方d2=2(x+y−8)2.构造令F(x,y)=21(x+y−8)2+λ(x2+2xy+3y2−8y),解方程⎩⎪⎨⎪⎧Fx′=x+y−8+(2λx+2λy)=0Fy′=x+y−8+(2λx+6λy−8λ)=0x2+2xy+3y2−8y=0解得{x=−2+22y=2或{x=−2−22y=2且d1=42−2,d2=42+2.故最短路径为42−2.
834

被折叠的 条评论
为什么被折叠?



