q=q0+q1i+q2j+q3k{q}=q_{0}+q_{1} i+q_{2} j+q_{3} kq=q0+q1i+q2j+q3k
q˙=q˙0+q˙1i+q˙2j+q˙3k\dot{q}=\dot{q}_{0}+\dot{q}_{1} i+\dot{q}_{2} j+\dot{q}_{3} kq˙=q˙0+q˙1i+q˙2j+q˙3k
limt→0q(t+δt)−q(t)δt\quad\lim _{t \rightarrow 0} \frac{\mathrm{q}(t+\delta t)-\mathrm{q}(t)}{\delta t}limt→0δtq(t+δt)−q(t)
=limt→0δq⊗q(t)−q(t)δt=\lim _{t \rightarrow 0} \frac{\delta \mathbf{q} \otimes \mathbf{q}(t)-\mathbf{q}(t)}{\delta t}=limt→0δtδq⊗q(t)−q(t)
=limt→0(δq−1)⊗q(t)δt=\lim _{t \rightarrow 0} \frac{(\delta \mathbf{q}-1) \otimes \mathbf{q}(t)}{\delta t}=limt→0δt(δq−1)⊗q(t)
=limt→0[0δθ2]⊗q(t)δt=\lim _{t \rightarrow 0}\frac{\left[\begin{array}{l}0 \\ \frac{\delta \theta}{2}\end{array}\right] \otimes \mathbf{q}(t)}{\delta t}=limt→0δt[02δθ]⊗q(t)
ω=limt→0δθδt\omega=\lim _{t \rightarrow 0} \frac{\delta \theta}{\delta t}ω=limt→0δtδθ
ω=[0ωxωyωz]⊤\omega=\begin{bmatrix} 0 & \omega_{x} & \omega_{y} & \omega_{z}\end{bmatrix}^\topω=[0ωxωyωz]⊤
q˙=12[0ω]⊗q=12Ω(ω)q\dot{q}=\frac{1}{2}\left[\begin{array}{c}0 \\ \omega\end{array}\right] \otimes \mathbf{q}=\frac{1}{2} \Omega(\omega) qq˙=21[0ω]⊗q=21Ω(ω)q
⌊ω]×=[0−ωzωyωz0−ωx−ωyωx0]\lfloor\omega]_{\times}=\left[\begin{array}{ccc}0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0\end{array}\right]⌊ω]×=⎣⎡0ωz−ωy−ωz0ωxωy−ωx0⎦⎤
Ω(ω)=[−⌊ω⌋×ω−ωT0]=[0ωz−ωyωx−ωz0ωxωyωy−ωx0ωz−ωx−ωy−ωz0]\Omega(\omega)=\left[\begin{array}{cc}-\lfloor\omega\rfloor_{\times} & \omega \\ -\omega^{T} & 0\end{array}\right]=\left[\begin{array}{cccc}0 & \omega_{z} & -\omega_{y} & \omega_{x} \\ -\omega_{z} & 0 & \omega_{x} & \omega_{y} \\ \omega_{y} & -\omega_{x} & 0 & \omega_{z} \\ -\omega_{x} & -\omega_{y} & -\omega_{z} & 0\end{array}\right]Ω(ω)=[−⌊ω⌋×−ωTω0]=⎣⎢⎢⎡0−ωzωy−ωxωz0−ωx−ωy−ωyωx0−ωzωxωyωz0⎦⎥⎥⎤
Sola, J., 2017. Quaternion kinematics for the error-state Kalman filter. arXiv preprint arXiv:1711.02508.
3353

被折叠的 条评论
为什么被折叠?



