四元数求导

q=q0+q1i+q2j+q3k{q}=q_{0}+q_{1} i+q_{2} j+q_{3} kq=q0+q1i+q2j+q3k

q˙=q˙0+q˙1i+q˙2j+q˙3k\dot{q}=\dot{q}_{0}+\dot{q}_{1} i+\dot{q}_{2} j+\dot{q}_{3} kq˙=q˙0+q˙1i+q˙2j+q˙3k

lim⁡t→0q(t+δt)−q(t)δt\quad\lim _{t \rightarrow 0} \frac{\mathrm{q}(t+\delta t)-\mathrm{q}(t)}{\delta t}limt0δtq(t+δt)q(t)

=lim⁡t→0δq⊗q(t)−q(t)δt=\lim _{t \rightarrow 0} \frac{\delta \mathbf{q} \otimes \mathbf{q}(t)-\mathbf{q}(t)}{\delta t}=limt0δtδqq(t)q(t)

=lim⁡t→0(δq−1)⊗q(t)δt=\lim _{t \rightarrow 0} \frac{(\delta \mathbf{q}-1) \otimes \mathbf{q}(t)}{\delta t}=limt0δt(δq1)q(t)

=lim⁡t→0[0δθ2]⊗q(t)δt=\lim _{t \rightarrow 0}\frac{\left[\begin{array}{l}0 \\ \frac{\delta \theta}{2}\end{array}\right] \otimes \mathbf{q}(t)}{\delta t}=limt0δt[02δθ]q(t)

ω=lim⁡t→0δθδt\omega=\lim _{t \rightarrow 0} \frac{\delta \theta}{\delta t}ω=limt0δtδθ

ω=[0ωxωyωz]⊤\omega=\begin{bmatrix} 0 & \omega_{x} & \omega_{y} & \omega_{z}\end{bmatrix}^\topω=[0ωxωyωz]

q˙=12[0ω]⊗q=12Ω(ω)q\dot{q}=\frac{1}{2}\left[\begin{array}{c}0 \\ \omega\end{array}\right] \otimes \mathbf{q}=\frac{1}{2} \Omega(\omega) qq˙=21[0ω]q=21Ω(ω)q

⌊ω]×=[0−ωzωyωz0−ωx−ωyωx0]\lfloor\omega]_{\times}=\left[\begin{array}{ccc}0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0\end{array}\right]ω]×=0ωzωyωz0ωxωyωx0

Ω(ω)=[−⌊ω⌋×ω−ωT0]=[0ωz−ωyωx−ωz0ωxωyωy−ωx0ωz−ωx−ωy−ωz0]\Omega(\omega)=\left[\begin{array}{cc}-\lfloor\omega\rfloor_{\times} & \omega \\ -\omega^{T} & 0\end{array}\right]=\left[\begin{array}{cccc}0 & \omega_{z} & -\omega_{y} & \omega_{x} \\ -\omega_{z} & 0 & \omega_{x} & \omega_{y} \\ \omega_{y} & -\omega_{x} & 0 & \omega_{z} \\ -\omega_{x} & -\omega_{y} & -\omega_{z} & 0\end{array}\right]Ω(ω)=[ω×ωTω0]=0ωzωyωxωz0ωxωyωyωx0ωzωxωyωz0

Sola, J., 2017. Quaternion kinematics for the error-state Kalman filter. arXiv preprint arXiv:1711.02508.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值