opencv-python(3.4.1.16版本)conda安装

本文指导如何在Anaconda环境中创建并激活名为opencvlearn的虚拟环境,使用pip安装OpenCV及其扩展包,并通过实例验证安装。重点介绍了在jupyter notebook中运用此环境的操作流程。
部署运行你感兴趣的模型镜像
conda create -n opencvlearn python=3.6 -y

创建名为(-n)opencvlearn的环境,并确认(-y)yes。(一定是python3.6)

conda activate opencvlearn

激活虚拟环境opencvlearn。

pip install opencv-python==3.4.1.15 -i https://pypi.douban.com/simple
pip install opencv-contrib-python==3.4.1.15 -i https://pypi.douban.com/simple

安装opencv和扩展包。

-i https://pypi.douban.com/simple

如果慢加上国内源。(已经加上了)

pip install matplotlib -i https://pypi.douban.com/simple

安装matplotlib。

pip install numpy -i https://pypi.douban.com/simple

安装numpy。

python
import numpy as np
import matplotlib as plt
import cv2 as cv
print(cv.__version__)

按行依次输入,测试是否安装成功。显示3.4.1,成功。

jupyter notebook用这个环境。(已安装annaconda)

conda activate opencvlearn
D:
jupyter notebook

依次输入,激活opencvlearn环境,到D盘,启动jupyter notebook。注意,不能关闭命令行窗口。

您可能感兴趣的与本文相关的镜像

Python3.11

Python3.11

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

(Navagent) lixing@DESKTOP-2PJK7EV:~/vlm/Grounded-Segment-Anything/grounded-sam-osx$ pipdeptree --reverse --packages numpy,scipy,pandas Warning!!! Duplicate package metadata found: "/home/lixing/anaconda3/envs/Navagent/lib/python3.8/site-packages" mpmath 1.3.0 (using 1.3.0, "/home/lixing/.local/lib/python3.8/site-packages") NOTE: This warning isn&#39;t a failure warning. ------------------------------------------------------------------------ Warning!!! Possibly conflicting dependencies found: * litellm==1.46.6 - requests [required: >=2.31.0,<3.0.0, installed: 2.28.2] * pycitysim==1.10.0 - numpy [required: >=1.24.0, installed: 1.22.4] * scikit-image==0.21.0 - scipy [required: >=1.8, installed: 1.7.3] * supervision==0.18.0 - scipy [required: ==1.10.0, installed: 1.7.3] ------------------------------------------------------------------------ numpy==1.22.4 ├── accelerate==0.34.2 [requires: numpy>=1.17,<3.0.0] ├── airsim==1.7.0 [requires: numpy] ├── blis==0.7.11 [requires: numpy>=1.15.0] │ └── thinc==8.2.5 [requires: blis>=0.7.8,<0.8.0] │ └── spacy==3.7.6 [requires: thinc>=8.2.2,<8.3.0] ├── chroma-hnswlib==0.7.3 [requires: numpy] ├── contourpy==1.1.1 [requires: numpy>=1.16,<2.0] │ └── matplotlib==3.7.5 [requires: contourpy>=1.0.1] │ ├── filterpy==1.4.5 [requires: matplotlib] │ ├── mmcls==0.25.0 [requires: matplotlib>=3.1.0] │ │ └── mmtrack==0.14.0 [requires: mmcls>=0.16.0,<1.0.0] │ ├── mmdet==3.3.0 [requires: matplotlib] │ ├── mmpose==0.28.0 [requires: matplotlib] │ ├── mmtrack==0.14.0 [requires: matplotlib] │ ├── open3d==0.18.0 [requires: matplotlib>=3] │ ├── pycocotools==2.0.7 [requires: matplotlib>=2.1.0] │ │ ├── groundingdino==0.1.0 [requires: pycocotools] │ │ ├── mmdet==3.3.0 [requires: pycocotools] │ │ ├── mmtrack==0.14.0 [requires: pycocotools] │ │ └── pycocoevalcap==1.2 [requires: pycocotools>=2.0.2] │ ├── seaborn==0.13.2 [requires: matplotlib>=3.4,!=3.6.1] │ │ └── mmtrack==0.14.0 [requires: seaborn] │ ├── supervision==0.18.0 [requires: matplotlib>=3.6.0] │ │ └── groundingdino==0.1.0 [requires: supervision] │ └── xtcocotools==1.14.3 [requires: matplotlib>=2.1.0] │ └── mmpose==0.28.0 [requires: xtcocotools>=1.12] ├── diffusers==0.35.1 [requires: numpy] ├── fastdtw==0.3.4 [requires: numpy] ├── filterpy==1.4.5 [requires: numpy] ├── groundingdino==0.1.0 [requires: numpy] ├── h5py==3.11.0 [requires: numpy>=1.17.3] ├── imageio==2.31.2 [requires: numpy] │ ├── pyrender==0.1.45 [requires: imageio] │ └── scikit-image==0.21.0 [requires: imageio>=2.27] ├── lap==0.5.12 [requires: numpy>=1.21.6] │ └── mmtrack==0.14.0 [requires: lap] ├── matplotlib==3.7.5 [requires: numpy>=1.20,<2] │ ├── filterpy==1.4.5 [requires: matplotlib] │ ├── mmcls==0.25.0 [requires: matplotlib>=3.1.0] │ │ └── mmtrack==0.14.0 [requires: mmcls>=0.16.0,<1.0.0] │ ├── mmdet==3.3.0 [requires: matplotlib] │ ├── mmpose==0.28.0 [requires: matplotlib] │ ├── mmtrack==0.14.0 [requires: matplotlib] │ ├── open3d==0.18.0 [requires: matplotlib>=3] │ ├── pycocotools==2.0.7 [requires: matplotlib>=2.1.0] │ │ ├── groundingdino==0.1.0 [requires: pycocotools] │ │ ├── mmdet==3.3.0 [requires: pycocotools] │ │ ├── mmtrack==0.14.0 [requires: pycocotools] │ │ └── pycocoevalcap==1.2 [requires: pycocotools>=2.0.2] │ ├── seaborn==0.13.2 [requires: matplotlib>=3.4,!=3.6.1] │ │ └── mmtrack==0.14.0 [requires: seaborn] │ ├── supervision==0.18.0 [requires: matplotlib>=3.6.0] │ │ └── groundingdino==0.1.0 [requires: supervision] │ └── xtcocotools==1.14.3 [requires: matplotlib>=2.1.0] │ └── mmpose==0.28.0 [requires: xtcocotools>=1.12] ├── mkl-fft==1.3.8 [requires: numpy>=1.16] ├── mkl-random==1.2.4 [requires: numpy>=1.16] ├── mmcls==0.25.0 [requires: numpy] │ └── mmtrack==0.14.0 [requires: mmcls>=0.16.0,<1.0.0] ├── mmcv-full==1.7.1 [requires: numpy] ├── mmdet==3.3.0 [requires: numpy] ├── mmpose==0.28.0 [requires: numpy] ├── motmetrics==1.4.0 [requires: numpy>=1.12.1] │ └── mmtrack==0.14.0 [requires: motmetrics] ├── numba==0.57.1 [requires: numpy>=1.21,<1.25] ├── onnxruntime==1.17.1 [requires: numpy>=1.21.6] ├── open3d==0.18.0 [requires: numpy>=1.18.0] ├── open3d==0.18.0 [requires: numpy>1.18] ├── opencv-contrib-python==4.9.0.80 [requires: numpy>=1.17.0] │ └── airsim==1.7.0 [requires: opencv-contrib-python] ├── opencv-contrib-python==4.9.0.80 [requires: numpy>=1.17.3] │ └── airsim==1.7.0 [requires: opencv-contrib-python] ├── opencv-python==4.9.0.80 [requires: numpy>=1.17.0] │ ├── groundingdino==0.1.0 [requires: opencv-python] │ └── mmpose==0.28.0 [requires: opencv-python] ├── opencv-python==4.9.0.80 [requires: numpy>=1.17.3] │ ├── groundingdino==0.1.0 [requires: opencv-python] │ └── mmpose==0.28.0 [requires: opencv-python] ├── opencv-python-headless==4.9.0.80 [requires: numpy>=1.17.0] │ └── supervision==0.18.0 [requires: opencv-python-headless>=4.5.5.64] │ └── groundingdino==0.1.0 [requires: supervision] ├── opencv-python-headless==4.9.0.80 [requires: numpy>=1.17.3] │ └── supervision==0.18.0 [requires: opencv-python-headless>=4.5.5.64] │ └── groundingdino==0.1.0 [requires: supervision] ├── pandas==1.3.5 [requires: numpy>=1.17.3] │ ├── mmtrack==0.14.0 [requires: pandas<=1.3.5] │ ├── motmetrics==1.4.0 [requires: pandas>=0.23.1] │ │ └── mmtrack==0.14.0 [requires: motmetrics] │ ├── open3d==0.18.0 [requires: pandas>=1.0] │ ├── openmim==0.3.9 [requires: pandas] │ └── seaborn==0.13.2 [requires: pandas>=1.2] │ └── mmtrack==0.14.0 [requires: seaborn] ├── plyfile==1.0.3 [requires: numpy>=1.17] ├── pycitysim==1.10.0 [requires: numpy>=1.24.0] ├── pycocotools==2.0.7 [requires: numpy] │ ├── groundingdino==0.1.0 [requires: pycocotools] │ ├── mmdet==3.3.0 [requires: pycocotools] │ ├── mmtrack==0.14.0 [requires: pycocotools] │ └── pycocoevalcap==1.2 [requires: pycocotools>=2.0.2] ├── pyquaternion==0.9.9 [requires: numpy] │ └── open3d==0.18.0 [requires: pyquaternion] ├── pyrender==0.1.45 [requires: numpy] ├── pyulog==1.2.2 [requires: numpy<1.25] ├── PyWavelets==1.4.1 [requires: numpy>=1.17.3] │ └── scikit-image==0.21.0 [requires: PyWavelets>=1.1.1] ├── scikit-image==0.21.0 [requires: numpy>=1.21.1] ├── scikit-learn==1.3.2 [requires: numpy>=1.17.3,<2.0] │ └── open3d==0.18.0 [requires: scikit-learn>=0.21] ├── scipy==1.7.3 [requires: numpy>=1.16.5,<1.23.0] │ ├── chumpy==0.70 [requires: scipy>=0.13.0] │ │ └── mmpose==0.28.0 [requires: chumpy] │ ├── filterpy==1.4.5 [requires: scipy] │ ├── mmdet==3.3.0 [requires: scipy] │ ├── mmpose==0.28.0 [requires: scipy] │ ├── mmtrack==0.14.0 [requires: scipy<=1.7.3] │ ├── motmetrics==1.4.0 [requires: scipy>=0.19.0] │ │ └── mmtrack==0.14.0 [requires: motmetrics] │ ├── pyrender==0.1.45 [requires: scipy] │ ├── scikit-image==0.21.0 [requires: scipy>=1.8] │ ├── scikit-learn==1.3.2 [requires: scipy>=1.5.0] │ │ └── open3d==0.18.0 [requires: scikit-learn>=0.21] │ └── supervision==0.18.0 [requires: scipy==1.10.0] │ └── groundingdino==0.1.0 [requires: supervision] ├── seaborn==0.13.2 [requires: numpy>=1.20,!=1.24.0] │ └── mmtrack==0.14.0 [requires: seaborn] ├── shapely==2.0.3 [requires: numpy>=1.14,<2] │ ├── mmdet==3.3.0 [requires: shapely] │ └── pycitysim==1.10.0 [requires: shapely>=2.0.0] ├── smplx==0.1.28 [requires: numpy>=1.16.2] ├── spacy==3.7.6 [requires: numpy>=1.15.0] ├── supervision==0.18.0 [requires: numpy>=1.21.2] │ └── groundingdino==0.1.0 [requires: supervision] ├── tensorboard==2.14.0 [requires: numpy>=1.12.0] ├── tensorboardX==2.6.2.2 [requires: numpy] ├── thinc==8.2.5 [requires: numpy>=1.15.0,<2.0.0] │ └── spacy==3.7.6 [requires: thinc>=8.2.2,<8.3.0] ├── tifffile==2023.7.10 [requires: numpy] │ └── scikit-image==0.21.0 [requires: tifffile>=2022.8.12] ├── torchvision==0.15.2 [requires: numpy] │ ├── clip==1.0 [requires: torchvision] │ ├── groundingdino==0.1.0 [requires: torchvision] │ ├── mmpose==0.28.0 [requires: torchvision] │ └── timm==0.4.12 [requires: torchvision] │ └── groundingdino==0.1.0 [requires: timm] ├── transformers==4.33.2 [requires: numpy>=1.17] │ └── groundingdino==0.1.0 [requires: transformers] ├── trimesh==4.8.1 [requires: numpy>=1.20] │ └── pyrender==0.1.45 [requires: trimesh] └── xtcocotools==1.14.3 [requires: numpy>=1.20.0] └── mmpose==0.28.0 [requires: xtcocotools>=1.12] (Navagent) lixing@DESKTOP-2PJK7EV:~/vlm/Grounded-Segment-Anything/grounded-sam-osx$ 如何解决上个问题
09-14
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值