前言
今天学习雷达信号处理时,发现一个已调信号的形式比较特别。
s
(
t
)
=
a
(
t
)
c
o
s
[
2
π
f
0
t
+
ϕ
(
t
)
]
s(t) = a(t)cos[2{\pi}f_0t+{\phi}(t)]
s(t)=a(t)cos[2πf0t+ϕ(t)]
在网上找也没有找到详细推导,下面来探讨这个公式是怎么来的。下面的推导仅靠个人理解推导,欢迎大家指出错误。
一、传统的调制
传统的调制就是直接将调制信号与载波进行相乘。设调制信号为
f
(
t
)
=
a
(
t
)
c
o
s
(
ϕ
(
t
)
)
f(t) = a(t)cos({\phi}(t))
f(t)=a(t)cos(ϕ(t))
其中
a
(
t
)
a(t)
a(t)为为信号包络,
ϕ
(
t
)
{\phi(t)}
ϕ(t)为信号相位,有
ϕ
(
t
)
=
ω
t
+
ϕ
n
(
t
)
{\phi}(t) = {\omega}t+{\phi}_n(t)
ϕ(t)=ωt+ϕn(t)
设载波信号
c
(
t
)
=
c
o
s
(
2
π
f
c
t
)
c(t) = cos(2{\pi}f_ct)
c(t)=cos(2πfct),那么已调信号
s
(
t
)
s(t)
s(t)为
s
(
t
)
=
a
(
t
)
c
o
s
(
ϕ
(
t
)
)
∙
c
o
s
(
2
π
f
c
t
)
s(t) = a(t)cos({\phi}(t)){\bullet} cos(2{\pi}f_ct)
s(t)=a(t)cos(ϕ(t))∙cos(2πfct)
即
s
(
t
)
=
a
(
t
)
2
{
c
o
s
(
2
π
f
c
t
−
ϕ
(
t
)
)
+
c
o
s
(
2
π
f
c
t
+
ϕ
(
t
)
)
}
s(t) = {\frac{a(t)}{2}}{\{}cos(2{\pi}f_ct-{\phi}(t))+cos(2{\pi}f_ct+{\phi}(t)){\}}
s(t)=2a(t){cos(2πfct−ϕ(t))+cos(2πfct+ϕ(t))}
我们应当只需要后半部分,即前面哪一项应当舍去。一般来说是通过滤波器来做的,当
ϕ
(
t
)
{\phi}(t)
ϕ(t)的频率较大才能取得较好的效果,否则很难滤除掉。那么怎么得到
s
(
t
)
=
a
(
t
)
c
o
s
[
2
π
f
c
t
+
ϕ
(
t
)
]
s(t) = a(t)cos[2{\pi}f_ct+{\phi}(t)]
s(t)=a(t)cos[2πfct+ϕ(t)]这种形式呢,可以使用IQ调制
二、IQ调制
将
s
(
t
)
=
a
(
t
)
c
o
s
[
2
π
f
c
t
+
ϕ
(
t
)
]
s(t) = a(t)cos[2{\pi}f_ct+{\phi}(t)]
s(t)=a(t)cos[2πfct+ϕ(t)]展开,有
s
(
t
)
=
a
(
t
)
c
o
s
(
2
π
f
c
t
)
⋅
c
o
s
ϕ
(
t
)
−
a
(
t
)
s
i
n
(
2
π
f
0
t
)
⋅
s
i
n
ϕ
(
t
)
s(t) = a(t)cos(2{\pi}f_ct){\cdot}cos{\phi}(t)-a(t)sin(2{\pi}f_0t){\cdot}sin{\phi}(t)
s(t)=a(t)cos(2πfct)⋅cosϕ(t)−a(t)sin(2πf0t)⋅sinϕ(t)
而
c
o
s
cos
cos和
s
i
n
sin
sin是可以通过移相90度进行相互转换的。写为IQ两路,有
s
I
(
t
)
=
a
(
t
)
c
o
s
ϕ
(
t
)
s
Q
(
t
)
=
a
(
t
)
s
i
n
ϕ
(
t
)
s_I(t) = a(t)cos{\phi}(t)\\ s_Q(t) = a(t)sin{\phi}(t)
sI(t)=a(t)cosϕ(t)sQ(t)=a(t)sinϕ(t)
Q
Q
Q通道为
I
I
I通道移相90度。有
s
(
t
)
=
s
I
(
t
)
c
o
s
(
2
π
f
c
t
)
−
s
Q
(
t
)
s
i
n
(
2
π
f
0
t
)
s(t) = s_I(t)cos(2{\pi}f_ct)-s_Q(t)sin(2{\pi}f_0t)
s(t)=sI(t)cos(2πfct)−sQ(t)sin(2πf0t)
上式完全可以理解成没有移相的调制信号
s
i
(
t
)
s_i(t)
si(t)与没有移相的载波
c
o
s
(
2
π
f
c
t
)
cos(2{\pi}f_ct)
cos(2πfct)进行相乘,然后与移相后的调制信号
s
Q
(
t
)
s_Q(t)
sQ(t)与移相后的载波
s
i
n
(
2
π
f
c
t
)
sin(2{\pi}f_ct)
sin(2πfct)进行相乘后的结果进行相减。
经过这样调制之后,那么就得到了 s ( t ) = a ( t ) c o s [ 2 π f c t + ϕ ( t ) ] s(t) = a(t)cos[2{\pi}f_ct+{\phi}(t)] s(t)=a(t)cos[2πfct+ϕ(t)]这种形式。
三、IQ解调
解调也是分为IQ两路进行解调。首先是与没有移向的载波信号
c
o
s
(
2
π
f
c
t
)
cos(2{\pi}f_ct)
cos(2πfct)进行相乘,即
I
I
I通道解调,设输出为
y
I
(
t
)
y_I(t)
yI(t),有
y
I
(
t
)
=
s
(
t
)
c
o
s
(
2
π
f
c
t
)
=
a
(
t
)
c
o
s
[
2
π
f
c
t
+
ϕ
(
t
)
]
c
o
s
(
2
π
f
c
t
)
y_I(t) = s(t)cos(2{\pi}f_ct)= a(t)cos[2{\pi}f_ct+{\phi}(t)]cos(2{\pi}f_ct)
yI(t)=s(t)cos(2πfct)=a(t)cos[2πfct+ϕ(t)]cos(2πfct)
有
y
I
(
t
)
=
s
(
t
)
c
o
s
(
2
π
f
c
t
)
=
a
(
t
)
c
o
s
[
2
π
f
c
t
+
ϕ
(
t
)
]
c
o
s
(
2
π
f
c
t
)
y
I
(
t
)
=
a
(
t
)
2
{
c
o
s
(
4
π
f
c
t
+
ϕ
(
t
)
)
+
c
o
s
(
ϕ
(
t
)
)
}
y_I(t) = s(t)cos(2{\pi}f_ct)= a(t)cos[2{\pi}f_ct+{\phi}(t)]cos(2{\pi}f_ct)\\ y_I(t) = {\frac{a(t)}{2}}{\{}cos(4{\pi}f_ct+{\phi}(t))+cos({\phi}(t)){\}}
yI(t)=s(t)cos(2πfct)=a(t)cos[2πfct+ϕ(t)]cos(2πfct)yI(t)=2a(t){cos(4πfct+ϕ(t))+cos(ϕ(t))}
经过低通滤波,再放大一倍后,有
y
I
(
t
)
=
a
(
t
)
c
o
s
(
ϕ
(
t
)
)
y_I(t) = a(t)cos({\phi}(t))
yI(t)=a(t)cos(ϕ(t))
同理,与移向后的载波信号
s
i
n
(
2
π
f
c
t
)
sin(2{\pi}f_ct)
sin(2πfct)进行相乘,即
Q
Q
Q通道解调,设输出为
y
Q
(
t
)
y_Q(t)
yQ(t)
y
Q
(
t
)
=
s
(
t
)
s
i
n
(
2
π
f
c
t
)
=
a
(
t
)
c
o
s
[
2
π
f
c
t
+
ϕ
(
t
)
]
s
i
n
(
2
π
f
c
t
)
y
Q
(
t
)
=
a
(
t
)
2
{
s
i
n
(
4
π
f
c
t
+
ϕ
(
t
)
)
−
s
i
n
(
ϕ
(
t
)
)
}
y_Q(t) = s(t)sin(2{\pi}f_ct)= a(t)cos[2{\pi}f_ct+{\phi}(t)]sin(2{\pi}f_ct)\\ y_Q(t) = {\frac{a(t)}{2}}{\{}sin(4{\pi}f_ct+{\phi}(t))-sin({\phi}(t)){\}}
yQ(t)=s(t)sin(2πfct)=a(t)cos[2πfct+ϕ(t)]sin(2πfct)yQ(t)=2a(t){sin(4πfct+ϕ(t))−sin(ϕ(t))}
再低通滤波,放大两倍再反向后有
y
Q
(
t
)
=
a
(
t
)
s
i
n
(
ϕ
(
t
)
)
y_Q(t) = a(t)sin({\phi}(t))
yQ(t)=a(t)sin(ϕ(t))
IQ解调就完成了
四、IQ解调的优点
经过解调后,有
y
I
(
t
)
=
a
(
t
)
c
o
s
(
ϕ
(
t
)
)
y
Q
(
t
)
=
a
(
t
)
s
i
n
(
ϕ
(
t
)
)
y_I(t) = a(t)cos({\phi}(t))\\ y_Q(t) = a(t)sin({\phi}(t))
yI(t)=a(t)cos(ϕ(t))yQ(t)=a(t)sin(ϕ(t))
有包络
a
(
t
)
a(t)
a(t)为
a
(
t
)
=
y
I
(
t
)
2
+
y
Q
(
t
)
2
a(t) = {\sqrt{y_I(t)^2+y_Q(t)^2}}
a(t)=yI(t)2+yQ(t)2
有相位
ϕ
(
t
)
{\phi}(t)
ϕ(t)为
ϕ
(
t
)
=
a
r
c
t
a
n
(
y
Q
(
t
)
y
I
(
t
)
)
{\phi}(t) = arctan({\frac{y_Q(t)}{y_I(t)}})
ϕ(t)=arctan(yI(t)yQ(t))
可见,
I
Q
IQ
IQ解调能同时获得解调信号的包络和相位。
对于普通解调,设接收信号
s
(
t
)
=
a
(
t
)
c
o
s
[
2
π
f
c
t
+
ϕ
(
t
)
]
s(t) = a(t)cos[2{\pi}f_ct+{\phi}(t)]
s(t)=a(t)cos[2πfct+ϕ(t)],那么解调后输出信号为
R
(
t
)
R(t)
R(t),有
R
(
t
)
=
s
(
t
)
c
o
s
(
2
π
f
c
t
)
=
a
(
t
)
c
o
s
[
2
π
f
c
t
+
ϕ
(
t
)
]
c
o
s
(
2
π
f
c
t
)
R
(
t
)
=
a
(
t
)
2
{
c
o
s
(
4
π
f
c
t
+
ϕ
(
t
)
)
+
c
o
s
(
ϕ
(
t
)
)
}
R(t) = s(t)cos(2{\pi}f_ct)= a(t)cos[2{\pi}f_ct+{\phi}(t)]cos(2{\pi}f_ct)\\ R(t) = {\frac{a(t)}{2}}{\{}cos(4{\pi}f_ct+{\phi}(t))+cos({\phi}(t)){\}}
R(t)=s(t)cos(2πfct)=a(t)cos[2πfct+ϕ(t)]cos(2πfct)R(t)=2a(t){cos(4πfct+ϕ(t))+cos(ϕ(t))}
经过低通滤波,再放大一倍后,有
y
I
(
t
)
=
a
(
t
)
c
o
s
(
ϕ
(
t
)
)
y_I(t) = a(t)cos({\phi}(t))
yI(t)=a(t)cos(ϕ(t))
经过包络检波,可以获得包络
a
(
t
)
a(t)
a(t),然而相位就很难获得了。
总结
看个图吧