【雷达信号处理】IQ调制理解


前言

今天学习雷达信号处理时,发现一个已调信号的形式比较特别。
s ( t ) = a ( t ) c o s [ 2 π f 0 t + ϕ ( t ) ] s(t) = a(t)cos[2{\pi}f_0t+{\phi}(t)] s(t)=a(t)cos[2πf0t+ϕ(t)]
在网上找也没有找到详细推导,下面来探讨这个公式是怎么来的。下面的推导仅靠个人理解推导,欢迎大家指出错误。


一、传统的调制

传统的调制就是直接将调制信号与载波进行相乘。设调制信号为 f ( t ) = a ( t ) c o s ( ϕ ( t ) ) f(t) = a(t)cos({\phi}(t)) f(t)=a(t)cos(ϕ(t))
其中 a ( t ) a(t) a(t)为为信号包络, ϕ ( t ) {\phi(t)} ϕ(t)为信号相位,有
ϕ ( t ) = ω t + ϕ n ( t ) {\phi}(t) = {\omega}t+{\phi}_n(t) ϕ(t)=ωt+ϕn(t)
设载波信号 c ( t ) = c o s ( 2 π f c t ) c(t) = cos(2{\pi}f_ct) c(t)=cos(2πfct),那么已调信号 s ( t ) s(t) s(t)
s ( t ) = a ( t ) c o s ( ϕ ( t ) ) ∙ c o s ( 2 π f c t ) s(t) = a(t)cos({\phi}(t)){\bullet} cos(2{\pi}f_ct) s(t)=a(t)cos(ϕ(t))cos(2πfct)

s ( t ) = a ( t ) 2 { c o s ( 2 π f c t − ϕ ( t ) ) + c o s ( 2 π f c t + ϕ ( t ) ) } s(t) = {\frac{a(t)}{2}}{\{}cos(2{\pi}f_ct-{\phi}(t))+cos(2{\pi}f_ct+{\phi}(t)){\}} s(t)=2a(t){cos(2πfctϕ(t))+cos(2πfct+ϕ(t))}
我们应当只需要后半部分,即前面哪一项应当舍去。一般来说是通过滤波器来做的,当 ϕ ( t ) {\phi}(t) ϕ(t)的频率较大才能取得较好的效果,否则很难滤除掉。那么怎么得到 s ( t ) = a ( t ) c o s [ 2 π f c t + ϕ ( t ) ] s(t) = a(t)cos[2{\pi}f_ct+{\phi}(t)] s(t)=a(t)cos[2πfct+ϕ(t)]这种形式呢,可以使用IQ调制

二、IQ调制

s ( t ) = a ( t ) c o s [ 2 π f c t + ϕ ( t ) ] s(t) = a(t)cos[2{\pi}f_ct+{\phi}(t)] s(t)=a(t)cos[2πfct+ϕ(t)]展开,有
s ( t ) = a ( t ) c o s ( 2 π f c t ) ⋅ c o s ϕ ( t ) − a ( t ) s i n ( 2 π f 0 t ) ⋅ s i n ϕ ( t ) s(t) = a(t)cos(2{\pi}f_ct){\cdot}cos{\phi}(t)-a(t)sin(2{\pi}f_0t){\cdot}sin{\phi}(t) s(t)=a(t)cos(2πfct)cosϕ(t)a(t)sin(2πf0t)sinϕ(t)
c o s cos cos s i n sin sin是可以通过移相90度进行相互转换的。写为IQ两路,有
s I ( t ) = a ( t ) c o s ϕ ( t ) s Q ( t ) = a ( t ) s i n ϕ ( t ) s_I(t) = a(t)cos{\phi}(t)\\ s_Q(t) = a(t)sin{\phi}(t) sI(t)=a(t)cosϕ(t)sQ(t)=a(t)sinϕ(t)
Q Q Q通道为 I I I通道移相90度。有
s ( t ) = s I ( t ) c o s ( 2 π f c t ) − s Q ( t ) s i n ( 2 π f 0 t ) s(t) = s_I(t)cos(2{\pi}f_ct)-s_Q(t)sin(2{\pi}f_0t) s(t)=sI(t)cos(2πfct)sQ(t)sin(2πf0t)
上式完全可以理解成没有移相的调制信号 s i ( t ) s_i(t) si(t)与没有移相的载波 c o s ( 2 π f c t ) cos(2{\pi}f_ct) cos(2πfct)进行相乘,然后与移相后的调制信号 s Q ( t ) s_Q(t) sQ(t)与移相后的载波 s i n ( 2 π f c t ) sin(2{\pi}f_ct) sin(2πfct)进行相乘后的结果进行相减。

经过这样调制之后,那么就得到了 s ( t ) = a ( t ) c o s [ 2 π f c t + ϕ ( t ) ] s(t) = a(t)cos[2{\pi}f_ct+{\phi}(t)] s(t)=a(t)cos[2πfct+ϕ(t)]这种形式。


三、IQ解调

解调也是分为IQ两路进行解调。首先是与没有移向的载波信号 c o s ( 2 π f c t ) cos(2{\pi}f_ct) cos(2πfct)进行相乘,即 I I I通道解调,设输出为 y I ( t ) y_I(t) yI(t),有
y I ( t ) = s ( t ) c o s ( 2 π f c t ) = a ( t ) c o s [ 2 π f c t + ϕ ( t ) ] c o s ( 2 π f c t ) y_I(t) = s(t)cos(2{\pi}f_ct)= a(t)cos[2{\pi}f_ct+{\phi}(t)]cos(2{\pi}f_ct) yI(t)=s(t)cos(2πfct)=a(t)cos[2πfct+ϕ(t)]cos(2πfct)

y I ( t ) = s ( t ) c o s ( 2 π f c t ) = a ( t ) c o s [ 2 π f c t + ϕ ( t ) ] c o s ( 2 π f c t ) y I ( t ) = a ( t ) 2 { c o s ( 4 π f c t + ϕ ( t ) ) + c o s ( ϕ ( t ) ) } y_I(t) = s(t)cos(2{\pi}f_ct)= a(t)cos[2{\pi}f_ct+{\phi}(t)]cos(2{\pi}f_ct)\\ y_I(t) = {\frac{a(t)}{2}}{\{}cos(4{\pi}f_ct+{\phi}(t))+cos({\phi}(t)){\}} yI(t)=s(t)cos(2πfct)=a(t)cos[2πfct+ϕ(t)]cos(2πfct)yI(t)=2a(t){cos(4πfct+ϕ(t))+cos(ϕ(t))}
经过低通滤波,再放大一倍后,有
y I ( t ) = a ( t ) c o s ( ϕ ( t ) ) y_I(t) = a(t)cos({\phi}(t)) yI(t)=a(t)cos(ϕ(t))
同理,与移向后的载波信号 s i n ( 2 π f c t ) sin(2{\pi}f_ct) sin(2πfct)进行相乘,即 Q Q Q通道解调,设输出为 y Q ( t ) y_Q(t) yQ(t) y Q ( t ) = s ( t ) s i n ( 2 π f c t ) = a ( t ) c o s [ 2 π f c t + ϕ ( t ) ] s i n ( 2 π f c t ) y Q ( t ) = a ( t ) 2 { s i n ( 4 π f c t + ϕ ( t ) ) − s i n ( ϕ ( t ) ) } y_Q(t) = s(t)sin(2{\pi}f_ct)= a(t)cos[2{\pi}f_ct+{\phi}(t)]sin(2{\pi}f_ct)\\ y_Q(t) = {\frac{a(t)}{2}}{\{}sin(4{\pi}f_ct+{\phi}(t))-sin({\phi}(t)){\}} yQ(t)=s(t)sin(2πfct)=a(t)cos[2πfct+ϕ(t)]sin(2πfct)yQ(t)=2a(t){sin(4πfct+ϕ(t))sin(ϕ(t))}
再低通滤波,放大两倍再反向后有
y Q ( t ) = a ( t ) s i n ( ϕ ( t ) ) y_Q(t) = a(t)sin({\phi}(t)) yQ(t)=a(t)sin(ϕ(t))
IQ解调就完成了

四、IQ解调的优点

经过解调后,有
y I ( t ) = a ( t ) c o s ( ϕ ( t ) ) y Q ( t ) = a ( t ) s i n ( ϕ ( t ) ) y_I(t) = a(t)cos({\phi}(t))\\ y_Q(t) = a(t)sin({\phi}(t)) yI(t)=a(t)cos(ϕ(t))yQ(t)=a(t)sin(ϕ(t))
有包络 a ( t ) a(t) a(t)
a ( t ) = y I ( t ) 2 + y Q ( t ) 2 a(t) = {\sqrt{y_I(t)^2+y_Q(t)^2}} a(t)=yI(t)2+yQ(t)2
有相位 ϕ ( t ) {\phi}(t) ϕ(t)
ϕ ( t ) = a r c t a n ( y Q ( t ) y I ( t ) ) {\phi}(t) = arctan({\frac{y_Q(t)}{y_I(t)}}) ϕ(t)=arctan(yI(t)yQ(t))
可见, I Q IQ IQ解调能同时获得解调信号的包络和相位。

对于普通解调,设接收信号 s ( t ) = a ( t ) c o s [ 2 π f c t + ϕ ( t ) ] s(t) = a(t)cos[2{\pi}f_ct+{\phi}(t)] s(t)=a(t)cos[2πfct+ϕ(t)],那么解调后输出信号为 R ( t ) R(t) R(t),有
R ( t ) = s ( t ) c o s ( 2 π f c t ) = a ( t ) c o s [ 2 π f c t + ϕ ( t ) ] c o s ( 2 π f c t ) R ( t ) = a ( t ) 2 { c o s ( 4 π f c t + ϕ ( t ) ) + c o s ( ϕ ( t ) ) } R(t) = s(t)cos(2{\pi}f_ct)= a(t)cos[2{\pi}f_ct+{\phi}(t)]cos(2{\pi}f_ct)\\ R(t) = {\frac{a(t)}{2}}{\{}cos(4{\pi}f_ct+{\phi}(t))+cos({\phi}(t)){\}} R(t)=s(t)cos(2πfct)=a(t)cos[2πfct+ϕ(t)]cos(2πfct)R(t)=2a(t){cos(4πfct+ϕ(t))+cos(ϕ(t))}
经过低通滤波,再放大一倍后,有
y I ( t ) = a ( t ) c o s ( ϕ ( t ) ) y_I(t) = a(t)cos({\phi}(t)) yI(t)=a(t)cos(ϕ(t))
经过包络检波,可以获得包络 a ( t ) a(t) a(t),然而相位就很难获得了。


总结

看个图吧
在这里插入图片描述

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值