机器人持续学习基准LIBERO系列6——获取并显示实际深度图

本文介绍了机器人持续学习基准LIBERO系列的安装、测试以及如何在环境中进行路径规划、相机画面可视化,包括单步移动和获取深度图,还展示了如何获取并可视化真实深度信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0.前置

1.代码基础

2.开启一个新环境

env_args = {
    "bddl_file_name": os.path.join(os.path.join(get_libero_path("bddl_files"), task.problem_folder, task.bddl_file)),
    "camera_heights": 128,
    "camera_widths": 128
}

env = OffScreenRenderEnv(**env_args)
#设置种子
env.seed(0)
#环境重置
env.reset()
#初始化
env.set_init_state(init_states[0])

3.可视化两个相机的二维图并获取归一化后的深度图

import numpy as np
#运动机械臂更新环境
obs, _, _, _ = env.step([0.] * 7)
#获取手外相机视角图片
agentview_image = (obs["agentview_image"])
robot0_eye_in_hand_image = (obs["robot0_eye_in_hand_image"])
agentview_depth = (obs["agentview_depth"])
robot0_eye_in_hand_depth =  (obs["robot0_eye_in_hand_depth"])
display(Image.fromarray(agentview_image))
display(Image.fromarray(robot0_eye_in_hand_image))

在这里插入图片描述
在这里插入图片描述

4.获取并可视化真实深度信息

from robosuite.utils.camera_utils import get_real_depth_map
agentview_depth_real = get_real_depth_map(env.sim, agentview_depth)
robot0_eye_in_hand_depth_real = get_real_depth_map(env.sim, robot0_eye_in_hand_depth)
agentview_depth_real = (agentview_depth_real.squeeze()*1000).astype(np.uint8)
robot0_eye_in_hand_depth_real = (robot0_eye_in_hand_depth_real.squeeze()*1000).astype(np.uint8) 
display(Image.fromarray(agentview_depth_real))
display(Image.fromarray(robot0_eye_in_hand_depth_real))

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿航626

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值