- 博客(44)
- 收藏
- 关注
原创 【机器人动力学】——建模方法之Lagrangian法
与牛顿欧拉方法的本质不同是从能量的角度进行分析的,不需要考虑力和力矩方向。其中,最后一项代表了向0势能面的平移量,加不加对运算结果的影响不变。对于整个系统而言,动能是每个连杆动能的和。:能量对速度的微分,即动量。:能量对位置的微分,即力。
2025-03-23 15:39:02
670
原创 【机器人动力学】——建模方法之牛顿欧拉法
Fdtdmvcmv˙cNdtdIω:注意此处的I定义的frame,一般不希望其取在对地坐标系下,因为物体运动时,I是时变的,其微分很难算。一般,定义I时,会取转轴和原点在body frame的质心处,这样就可以保证物体运动时,CINCIω˙ω×CIω。
2025-03-23 11:44:09
906
原创 【机器人动力学】——转动惯量
其含义相当于任意形状的刚体,都能找到一个旋转轴使其新转动惯量矩阵为实对称矩阵。:计算转动惯量的时候需要旋转轴。若已知两转轴之间的相对位移。
2025-03-23 11:05:43
697
原创 【机器人动力学】——加速度的定义与拆解
BAQ=ddtBVQ=limΔt→0BVQ(t+Δt)−BVQ(t)Δt{}^BA_Q = \frac{d}{dt}{}^BV_Q = \lim_{\Delta t \to 0} \frac{{}^B V_Q(t + \Delta t)-{}^B V_Q(t)}{\Delta t}BAQ=dtdBVQ=Δt→0limΔtBVQ(t+Δt)−BVQ(t)AΩ˙B=ddtAΩB=limΔt→0AΩB(t+Δt)−AΩB(t)Δt{}^A\dot{\Omega}_B = \frac{d}{dt}
2025-03-23 10:35:57
624
原创 【机器人动力学】——运动和受力的描述
BVQdtdBPQΔt→0limΔtBPQtΔt−BPQt3×1的向量若单位向量et相对于转轴ωe˙ω×e。
2025-03-20 10:46:35
733
原创 【机器人运动学】——刚体运动的描述
(3)对转动的frame当下的转轴,也可以利用ZYZ的方式进行拆解。当下的转轴:Euler angles (ZYX)→ 右乘联体。的转轴:FIxed angles (XYZ)→ 左乘基。(1)多次转动需要确定。,转动顺序不能互换。
2025-03-19 16:55:16
235
原创 【机器人运动学】——位姿的描述
旋转矩阵可以表示“两坐标系之间的相对姿态”,也可以用于“转换向量的坐标””,也可以理解成B坐标系三个轴的方向向量投影到A坐标系xyz三个轴。:用旋转矩阵R描述一个坐标系(相对于另一个坐标系)的姿态。:用向量P描述一个坐标系(相对于另一个坐标系)的位置。这里,中间推导仍然用的是“投影的定义”来解释。(2)姿态→微分→角速度→微分→角加速度。相对于世界坐标系坐标轴的姿态”来描述。(1)位置→微分→速度→微分→加速度。在世界坐标系下的位置”来描述。(1)平动:由“物体坐标系。(2)转动:由“物体坐标系。
2025-03-19 16:17:52
615
原创 【CFD仿真学习】——利用ANSYS实现仿鱼游动(二维运动)
参考Wu W C .An adaptive version of ghost-cell immersed boundary method for incompressible flows with complex stationary and moving boundaries[J].SCIENCE CHINA Physics,Mechanics & Astronomy, 2010.文章的内容,进行复现。
2025-02-28 16:17:12
719
原创 【飞行器原理学习】——2.机翼的升阻力原理
理想条件下,同一根管道的任意截面处,单位体积流体的动能K、势能E及压力能P之和是一个常数。P21ρv2ρghconst1对于飞机而言,最重要的推论为:P21ρv2const2。
2025-02-21 09:51:19
745
原创 【飞行器原理学习】——1. 机翼及机翼参数
飞机的各种机翼是飞机的通过铰链、钢索、液压等方式连接在机身上操纵面运动时,会改变机翼的弧度和形状,使流经的空气发生偏转,从而影响空气动力的大小。使飞机围绕着3轴运动。
2025-02-20 17:13:25
286
原创 【STM32F1】——9轴姿态传感器JY901与IIC通信
电压:3.3-5V量程:X/Z轴 ±180°, Y轴 ±90°通信方式:IIC、UART(默认9600波特率)型号区别:JY901S(带温补),JY901B(带气压)帧头格式:以角度输出为例,回传数据为11位。格式为:0x55 0x53 RollL RollH PitchL PitchH YawL YawH TL TH SUMJY901的IIC通信协议1)模块的IIC协议采用寄存器地址访问的方式。每个地址内的数据均为16位数据,寄存器地址和含义详见用户手册。2)JY901-IIC的写入。
2024-11-13 21:55:00
1170
1
原创 【STM32F1】——无线收发模块RF200与串口通信
电压:3.4-5.5V工作频率发射功率:100mW工作范围:1500m通信方式:UART(默认9600波特率)尺寸。
2024-11-13 11:24:08
1157
原创 【STM32F1】——无刷电机转速控制与TIM定时器
使用STM32F103C8T6的TIM2定时器生成PWM信号,通过按键调节占空比,控制电调驱动AMAX2004T电机以不同转速转动。
2024-11-12 21:39:19
970
原创 【STM32F1】——舵机角度控制与TIM定时器
电压:4.8-6.0V操作角度:180°质量:5.8g信号周期:20ms脉冲宽度数字舵机/模拟舵机:数字舵机只需要发一次信号,模拟舵机需要持续发信号。
2024-11-10 01:11:58
903
原创 【STM32F1】——9轴姿态模块JY901与串口通信(下)
电压:3.3-5V量程:X/Z轴 ±180°, Y轴 ±90°通信方式:IIC、UART(默认9600波特率)型号区别:JY901S(带温补),JY901B(带气压)帧头格式:以角度输出为例,回传数据为11位。格式为:0x55 0x53 RollL RollH PitchL PitchH YawL YawH TL TH SUM为什么要用DMA:普通的数据接收方式,收发一个字节就处理一次中断请求。在处理复杂任务时或者大量收发数据时,频繁的中断开关显然会增加CPU的负担。什么是DMA。
2024-11-08 19:23:16
1061
原创 【STM32F1】——9轴姿态模块JY901与串口通信(上)
电压:3.3-5V量程:X/Z轴 ±180°, Y轴 ±90°通信方式:IIC、UART(默认9600波特率)型号区别:JY901S(带温补),JY901B(带气压)帧头格式:以角度输出为例,回传数据为11位。格式为:0x55 0x53 RollL RollH PitchL PitchH YawL YawH TL TH SUM。
2024-11-08 18:36:11
1144
原创 【机器鱼设计学习1】——机械结构设计
https://blog.youkuaiyun.com/qq_56462652/article/details/134883083
2024-09-25 15:57:29
201
原创 【PCB设计】——Altium Designer入门
9)覆铜TGM-工具-覆铜-覆铜管理器-来自新的多边形(板子外形)-NET-GND-顶层/底层-应用。工具-封装管理器-元件列表里检查一下有没有-没有移除后-浏览添加-接受更改-执行添加。4)设计-Update:执行变更,查看一下有没有报错(引脚没连上得改之类的)shift+ctrl+x:交叉选择模式(PCB和原理图的元件对应,查看方便)放置-圆弧-给板子四个角添加圆角(按ctrl可以无视栅格拖动)5)画PCB:Keep-Out-Layer。PCB形状:EOS-编辑-原点-设置原点。
2024-09-19 15:55:32
508
原创 【机器人建模和控制】读书笔记
x10x1∙x0,其实就是:1)x1轴向量在O0系下的坐标2)在x0轴上的投影3)坐标变换矩阵的R10的第一个元素。
2024-09-11 16:14:40
1442
原创 【机械原理学习】——《机械原理》(第二版)机构部分
高副、曲线轮廓、连续等速转动、变化半径设计凸轮机构时首先要根据工作要求确定从动件的运动规律,然后根据所确定的从动件运动规律设计凸轮的轮廓曲线。为了避免刚性冲击或强烈振动,可采用圆弧抛物线或其他曲线对从动件位移线图的两端点处进行修正。凸轮运动的位移、速度、加速度曲线图 - 刚性冲击、柔性冲击(加速度有限值突变)凸轮的运动规律:等速运动(低速、从动件质量较小)、等变速运动(中速、轻载的场合)、五次多项式运动(高速)、正弦运动(高速)从动件运动规律的选择盘型凸轮轮廓曲线的设计图解法和解析法。
2024-08-15 11:18:27
2508
1
原创 【Matlab】一些tricks总结
则可以利用xlim/ylim()函数设置视窗的坐标轴范围跟随运动中心变化,实现视窗动态调整。假设plot()函数画的对象运动中心是。
2024-05-16 08:39:27
203
原创 【现代控制理论笔记】——第六章:状态观测器
前述状态反馈配置极点的优越性,具有一个前提是状态全部是可以测量的,但实际并非如此,我们需要对系统状态进行重构,即观测器设计问题。其原理是:重新设计一个系统,用作为它的输入信号,使其输出信号x等价于原系统的状态x。z˙xFzGyHuMzNy一般,如果观测器输出等价于原系统状态x的称为;输出等价于原系统状态函数Kx的称为。
2024-01-09 23:57:43
11031
3
原创 【现代控制理论笔记】——第五章:能控、能观和传递函数
对于最小实现问题,先判断系统是否是严格真的,如果不是则用D换成严格真的;如果是,则判断是不是可简约的,如果是则化成不可简约的,如果不是,则写出能控标准型实现即为最小实现。
2024-01-09 15:22:33
5460
原创 【现代控制理论笔记】——第四章:能观性分析
xteAtx0∫0teAt−τBuτdτxteAtx0∫0teAt−τBuτdτ可以看出,当输入给定时,系统的运动特性完全取决于初始状态。那么如何在已知输入输出的前提下,得到初始状态x0x_0x0便是待解决的问题。对于一般情况,xteAt−t0xt0∫t0teAt−τBuτdτxteAt−t0xt0∫t0teA。
2024-01-08 21:30:19
1837
原创 【现代控制理论笔记】——第三章:状态反馈
对系统:x˙=Ax+Buy=Cx\dot x=Ax+Bu\\y=Cxx˙=Ax+Buy=Cx引入状态正反馈:u=Kx+vu=Kx+vu=Kx+v得到状态反馈系统:x˙=(A+BK)x+Bvy=Cx\dot{x}=(A+BK)x+Bv\\y=Cxx˙=(A+BK)x+Bvy=Cx框图:可以看出,状态反馈的引入改变了系统矩阵,但不改变能控性:通过状态反馈的引入,改变系统矩阵,使闭环极点定位于目标位置。系统是能控的。① 根据A求出原系统的特征多项式:det(sI−A)=a0+...+an−1sn−1+snde
2024-01-08 11:46:52
5893
原创 【现代控制理论笔记】——第二章:能控性分析
系统能控性研究的是能否通过输入来影响系统的状态:xteAtx0∫0teAt−τBuτdτxteAtx0∫0teAt−τBuτdτ可以看出定义对控制状态的描述。其文字描述:如果系统的每个状态变量的运动都可由输入来影响和控制,使得经有限时间区间由任意始点到达原点,就称系统是能控的。
2024-01-07 17:09:40
2885
1
原创 【现代控制理论笔记】——第一章:线性定常系统的表示方法及运动分析
主要阐述运动分析,分为连续系统和离散系统两类。运动分析涉及零输入、零状态及一般情况。注意求eAtL−1[(sI−A−1。
2024-01-04 11:36:19
2324
1
原创 【最优控制笔记】——4自适应动态规划3
值迭代通过先给定值函数V,策略迭代先给定控制率u两者原理上类似,都采用控制率u更新迭代,使V最终收敛的方式逼近最优性能指标。
2023-12-18 15:01:25
1837
1
原创 【最优控制笔记】——4自适应动态规划1
自适应动态规划(Adaptive Dynamic Programming)1.ADP基础1)简介Werbos提出,利用函数近似结构逼近动态规划方程中的性能指标函数和控制策略,以满足最优性原理,从而时间向前(Forward-in-time) 获得最优控制和最优性能指标函数。主要解决无限域最优控制问题(没有终点,即使有也需要运算无数次才能到起点):无限域最优控制问题的Bellman最优性原理表示为:HJB方程表示为:2)基本原理自适应动态规划整个结构包括三个部分,整个过程是自学习的。三部
2023-12-11 16:28:59
3025
6
原创 【最优控制笔记】——3动态规划之连续系统2
本节主要阐述连续系统动态规划的第二种求解思路,其系统及性能指标形式为:目的是:找到区间t0T上的连续控制量u∗t使性能指标J最小,且使状态xt0。
2023-11-27 20:38:08
1552
1
原创 【最优控制笔记】——3动态规划之连续系统1
连续系统表述为:其性能指标写作:(这个地方为什么是J(0)?)对于连续系统的动态规划问题,求解思路有两种:1)先离散化,求解离散系统的最优控制,再利用零阶保持器制造数字控制;2)直接解决连续最优控制问题获得连续输入可以利用一阶近似(欧拉近似)对系统(6.3-1)进行离散化,采样时间设为τ\tauτ:为了表示方便,定义xk=x(kτ),uk=u(kτ)x_k=x(k\tau),u_k=u(k\tau)xk=x(kτ),uk=u(kτ),有:若再定义:则有了式(6.2-1)的形式:如果让N=TτN
2023-11-27 19:19:02
1223
1
原创 【最优控制笔记】——3动态规划之离散系统
最优策略的任意后部子策略都是子策略,即无论以前状态决策如何,从当前直到最后的每个决策必构成最优子策略。
2023-11-27 16:47:23
2430
1
原创 【最优控制笔记】——2离散系统最优控制之不定终值
对于终端状态不确定的LQ问题,求解步骤总结如下:对于the final-state weighting matrixSkS_kSk的原始形式,可以采用Kalman Gain改写:其等价于Joseph stabilized version of the Riccati equation:其求解起来具有更优的数值求解性能。
2023-11-15 15:38:51
301
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人