梯度消失与梯度爆炸

一、梯度消失

        梯度消失指的是在反向传播过程中,由于链式求导法则的累积效应,随着网络层数的增加,梯度逐渐变小,导致参数更新缓慢甚至停滞,网络无法收敛。

        梯度消失问题( vanishing gradient)是在早期的BP网络中比较常见的问题。这种问题的发生会让训练很难进行下去,看到的现象就是训练不再收敛——Loss过早地不再下降,而精确度也过早地不再提高。

1、梯度消失产生的原因

  • 激活函数的选择:使用一些饱和激活函数(如Sigmoid,Tanh)时,导数在极值附近接近于零,反向传播时梯度也会变小
  • 权重初始化不当:过大或过小的初始权重会使梯度在网络中传播时指数级增加或减小,导致梯度消失或爆炸
  • 深度网络的结构:当网络层数较多时,梯度需要通过多层传播,由于链式求导法则的累积效应,当每一层的梯度都小于1时,梯度值会呈指数级衰减

2、梯度消失的解决方法

  • 使用适当的激活函数:使用ReLU等非饱和激活函数可以缓解梯度消失问题
  • 使用合适的权重初始化方法:如Xavier/Glorot初始化可以使每层的输出方差保持一致,避免梯度消失或爆炸
  • 使用批归一化(Batch Normalization):在每一层的输入数据上进行归一化,有助于缓解梯度消失问题

二、梯度爆炸

        梯度爆炸则是指梯度在反向传播过程中,由于链式求导法则的累乘效应,某些参数的梯度会变得非常大,导致参数更新过于剧烈,进而使得损失函数出现震荡现象。梯度爆炸问题在循环神经网络中较为常见,尤其是当网络处理较长序列时。

        梯度爆炸的表现为训练过程中损失函数的数值不稳定或发散。

1、梯度爆炸产生的原因

  • 权重初始化不当:过大的初始权重会导致梯度在网络中传播时指数级增
  • 深度网络的结构:当网络层数较多时,梯度需要通过多层传播,由于链式求导法则的累积效应,当每一层的梯度都大于1时,梯度值会呈指数级增加

2、梯度爆炸的解决方法

  • 优化网络结构:对于循环神经网络,使用长短期记忆(LSTM)单元和相关的门类型神经元结构可以减少梯度爆炸问题。LSTM单元通过其特殊的结构设计,能够更好地捕捉长期依赖关系,从而缓解梯度消失问题。
  • 使用合适的权重初始化方法:限制权重初始范围,如Xavier/Glorot初始化
  • 使用批归一化(Batch Normalization):在每一层的输入数据上进行归一化
  • 使用梯度裁剪(Gradient Clipping):设置一个梯度阈值,当梯度超过阈值时进行裁剪,限制梯度的大小
  • 调整学习率:学习率的大小直接影响到参数更新的步长。适当减小学习率可以降低梯度爆炸的风险,但同时也可能使训练过程变得缓慢。因此,需要根据实际情况调整学习率,以达到最佳的训练效果,如RMSprop或Adam,这些优化器可以自适应地调整学习率

 

参考文献

梯度消失、梯度爆炸的原因和解决办法_梯度消失的原因及解决方法-优快云博客

梯度消失问题-优快云博客

https://zhuanlan.zhihu.com/p/272648694

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值