35、探索 My.Computer 对象:强大功能与实用操作

探索 My.Computer 对象:强大功能与实用操作

1. 检测网络状态变化

当计算机的网络连接状态发生变化时,我们可以通过不同的方式来获取警报。一种方式是拦截 My.Computer.Network 对象的 NetworkAvailabilityChanged 事件。不过,目前没有简单的方法来检测当前应用程序的另一个实例是否已启动,并将其命令行参数传递给正在运行的实例。如果需要实现单实例应用程序,建议使用 Visual Basic 应用程序框架和 StartupNextInstance 事件。

2. My.Computer 对象概述

My.Computer 对象无疑是 My 命名空间中功能最丰富的对象。除了返回计算机名称的 Name 属性外,它的其他属性都返回子对象,这些子对象让我们能够利用本地计算机的众多功能,如文件系统、音频系统、内存、键盘、鼠标、网络、网络端口、剪贴板和注册表等。以下是 My.Computer 对象的子对象及其主要成员的详细介绍:
| 对象 | 成员 | 描述 |
| — | — | — |
| Audio | Play(string, mode) | 读取存储在文件、流或字节数组中的 .wav 数据。支持在后台播放并循环,直到调用 Stop 方法。 |
| | PlaySystemSound(sound) | 播放系统声音。参数是一个 System.Media

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值