机器人最优伺服控制器设计
1. 引言
在移动机器人的控制领域,最优伺服控制器设计是一个关键问题。传统的控制器设计方法通常依赖于代数 Riccati 方程的解法,这种方法需要通过试错来选择合适的加权矩阵,且设计过程复杂且间接。为了简化这一过程并提高设计的灵活性和适应性,可以使用进化算法自动调整控制器的稳定最优增益。本文将详细介绍如何使用进化算法设计移动机器人的最优伺服控制器,涵盖类型 1和类型 2控制器的设计方法,适应度函数的构建,以及通过模拟验证其有效性。
2. 移动机器人的动态模型
假设一个具有两个独立驱动轮的移动机器人在工作空间中刚性移动。其绝对坐标系 ( O-XY ) 固定在平面上,如图 1所示。
移动机器人的动态特性可以表示为:
[ \dot{x}(t) = v(t) \cos(\phi(t)) ]
[ \dot{y}(t) = v(t) \sin(\phi(t)) ]
[ \dot{\phi}(t) = \frac{u_r(t) - u_l(t)}{L} ]
其中:
- ( x(t) ) 和 ( y(t) ) 是机器人在平面上的位置坐标。
- ( \phi(t) ) 是机器人的方位角。
- ( v(t) ) 是机器人的平移速度。
- ( u_r(t) ) 和 ( u_l(t) ) 分别是右轮和左轮的操纵输入扭矩。
- ( L ) 是两个轮子之间的距离。
轮子的
超级会员免费看
订阅专栏 解锁全文
8204

被折叠的 条评论
为什么被折叠?



