时间限制:2000ms
单点时限:1000ms
内存限制:256MB
描述
给定字符串,求它的回文子序列个数。回文子序列反转字符顺序后仍然与原序列相同。例如字符串aba中,回文子序列为”a”, “a”, “aa”, “b”, “aba”,共5个。内容相同位置不同的子序列算不同的子序列。
输入
第一行一个整数T,表示数据组数。之后是T组数据,每组数据为一行字符串。
输出
对于每组数据输出一行,格式为”Case #X: Y”,X代表数据编号(从1开始),Y为答案。答案对100007取模。
数据范围
1 ≤ T ≤ 30
小数据
字符串长度 ≤ 25
大数据
字符串长度 ≤ 1000
样例输入
5
aba
abcbaddabcba
12111112351121
ccccccc
fdadfa
样例输出
Case #1: 5
Case #2: 277
Case #3: 1333
Case #4: 127
Case #5: 17
分析:
1. 区间型DP, 先来说一下状态方程: 如求i到j这个区间共有多少回文子序列 ,两种情况①当s[i] == s[j]时,例如“a….a”,d[i][j] = d[i][j-1] + d[i+1][j] + 1(由d[i][j] = 2*d[i+1][j-1] + d[i][j-1] + d[i+1][j] + 1 - 2*d[i+1][j-1] 化简来的。 解释:已知 i+1 到 j-1 有d[i+1][j-1]个回文子序列, 又有s[i] == s[j], 那么可与中间(串i+1到j-1)已知的回文子序列再构成d[i+1][j-1]个回文子序列,再加上原来中间串所包含的回文子序列共2*d[i+1][j-1]个, 两个a组合”aa”也是回文, 所以再加1, 再分别计算左、右两边的a和中间串所构成的回文子序列, 但是这个时候

本文介绍了如何使用区间型动态规划解决求解字符串的回文子序列个数问题。通过分析状态方程,分别讨论了字符相等和不相等的情况,并给出了样例输入和输出,解释了计算过程。
最低0.47元/天 解锁文章
1705

被折叠的 条评论
为什么被折叠?



