最大匹配、最小顶点覆盖、最大独立集、最小路径覆盖(转)

本文介绍了二分图的概念以及相关算法,包括最大匹配、最小顶点覆盖、最大独立集和最小路径覆盖。最大匹配等于最小顶点覆盖,二者在二分图中有重要的关系。文章通过实例解析了如何利用匈牙利算法和最大流算法解决二分图的最大匹配问题,并给出了多个POJ题目来展示如何将实际问题转化为二分图模型。同时,文章还证明了二分图的一些性质,如最大团与最大独立集的关系,以及最小顶点覆盖、最大独立集和最大匹配之间的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在讲述这两个算法之前,首先有几个概念需要明白:

二分图:
二分图又称二部图,是图论中的一种特殊模型。设G=(V,E)是一个无向图,如果顶点V可以分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A, j in B), 则称图G是二分图。
匹配:
给定一个二分图,在G的一个子图G’中,如果G’的边集中的任意两条边都不依附于同一个顶点,则称G’的边集为G的一个匹配
最大匹配:
在所有的匹配中,边数最多的那个匹配就是二分图的最大匹配了
顶点覆盖:
在顶点集合中,选取一部分顶点,这些顶点能够把所有的边都覆盖了。这些点就是顶点覆盖集
最小顶点覆盖:
在所有的顶点覆盖集中,顶点数最小的那个叫最小顶点集合。
独立集:
在所有的顶点中选取一些顶点,这些顶点两两之间没有连线,这些点就叫独立集
最大独立集:
在左右的独立集中,顶点数最多的那个集合
路径覆盖:
在图中找一些路径,这些路径覆盖图中所有的顶点,每个顶点都只与一条路径相关联。
最小路径覆盖:
在所有的路径覆盖中,路径个数最小的就是最小路径覆盖了。
熟悉了这些概念之后,还有一个二分图最大匹配的König定理,这个定理的内容是:最大匹配 = 最小顶点覆盖。此处不证明其正确性。有了这个定理之后还可以得出一些二分图特有的公式:
最大独立集 = 顶点个数 – 最小顶点覆盖(最大匹配)
这个公式,我们可以利用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值